Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077302    DOI: 10.1088/1674-1056/19/7/077302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-dependent transport through an interacting quantum dot system

Huang Rui (黄睿)a, Wu Shao-Quan (吴绍全)b, Yan Cong-Hua (闫从华)b
a College of Sciences, Southwest Petroleum University, Nanchong 637001, China; b College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China
Abstract  Using an equation of motion technique, we report on a theoretical analysis of transport characteristics of a spin-valve system formed by a quantum dot coupled to ferromagnetic leads, whose magnetic moments are oriented at an angle $\theta$ with respect to each other, and a mesoscopic ring by the Anderson Hamiltonian. We analyse the density of states of this system, and our results reveal that the density of states show some noticeable characteristics depending on the relative angle $\theta$ of magnetic moment M, and the spin-polarised strength P in ferromagnetic leads, and also the magnetic flux $\varPhi$ and the number of lattice sites NR in the mesoscopic ring. These effects might have some potential applications in spintronics.
Keywords:  Kondo effect      spin-polarised transport      density of states  
Accepted manuscript online: 
PACS:  73.63.Kv (Quantum dots)  
  72.25.-b (Spin polarized transport)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
Fund: Project supported by the Youth Research Fund of Southwest Petroleum University.

Cite this article: 

Huang Rui (黄睿), Wu Shao-Quan (吴绍全), Yan Cong-Hua (闫从华) Spin-dependent transport through an interacting quantum dot system 2010 Chin. Phys. B 19 077302

[1] Baibich M N, Broto J M, Fert A, Nguyen V D F, Pteroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[2] Julliere M 1975 Phys. Lett. A 54 225
[3] Wang B G, Wang J and Guo H 2001 J. Phys. Soc. Jpn. 70 2645
[4] Tsukagoshi K, Alphenaar B W and Ago H 1999 Nature 401 573
[5] Sheng L, Cheng Y, Teng H Y and Ting C S 1999 Phys. Rev. B bf 59 480
[6] Wu S Q 2009 Acta Phys. Sin. 58 4175 (in Chinese)
[7] Slonczewski J C 1989 Phys. Rev. B 39 6995
[8] Yang F B, Wu S Q, Yan C H, Huang R, Hou T and Bi A H 2008 Chin. Phys. B 17 1383
[9] Chen X W, Chen B J, Shi Z G and Song K H 2009 Acta Phys. Sin. 58 2720 (in Chinese)
[10] Martinek J, Utsumi Y, Imamura H, Barnas J, Maekawa S, Konig J and Schon G 2003 Phys. Rev. Lett. 91 127203
[11] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
[12] Zhang P, Xue Q K, Wang Y P and Xie X C 2002 Phys. Rev. Lett. 89 286803
[13] Yan C H, Wu S Q, Huang R and Sun W L 2008 Chin. Phys. B bf 17 296
[14] L"u R and Liu Z R 2007 Chin. Phys. Lett. 24 159
[15] Kicheon K 2001 Phys. Rev. B 65 033302
[16] Thimm W B, Kroha J and Delft J V 1999 Phys. Rev. Lett. 82 2143
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[3] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[4] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[5] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[6] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[7] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[8] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[9] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[10] Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study
Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永). Chin. Phys. B, 2019, 28(11): 116301.
[11] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[12] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
[13] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[14] Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device
Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref. Chin. Phys. B, 2017, 26(9): 097102.
[15] The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombic M3N4 (M=Si, Ge, Sn): A first-principles study
Dong Chen(陈东), Ke Cheng(程科), Bei-Ying Qi(齐蓓影). Chin. Phys. B, 2017, 26(4): 046303.
No Suggested Reading articles found!