Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097101    DOI: 10.1088/1674-1056/27/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic properties of defects in Weyl semimetal tantalum arsenide

Yan-Long Fu(付艳龙)1,2, Chang-Kai Li(李长楷)1,2, Zhao-Jun Zhang(张昭军)1,2, Hai-Bo Sang(桑海波)1,2, Wei Cheng(程伟)1,2,4, Feng-Shou Zhang(张丰收)1,2,3
1 Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Beijing Radiation Center, Beijing 100875, China;
3 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China;
4 Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  

The tantalum arsenide (TaAs) is a topological Weyl semimetal which is a class of materials of gapless with three-dimensional topological structure. In order to develop a comprehensive description of the topological properties of the Weyl semimetal, we use the density functional theory to study several defects of TaAs after H irradiation and report the electronic dispersion curves and the density of states of these defects. We find that various defects have different influences on the topological properties. Interstitial H atom can shift the Fermi level. Both Ta vacancy with a concentration of 1/64 and As vacancy with a concentration of 1/64 destruct a part of the Weyl points. The substitutional H atom on a Ta site could repair only a part of the Weyl points, while H atom on an As site could repair all the Weyl points.

Keywords:  Weyl semimetal      first-principles calculations      band structures      density of states  
Received:  23 March 2018      Revised:  20 June 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.55.Ak (Metals, semimetals, and alloys)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11635003, 11025524, and 11161130520), the National Basic Research Program of China (Grant No. 2010CB832903), and the European Commissions of 7th Framework Programme (FP7-PEOPLE-2010-IRSES) (Grant No. 269131).

Corresponding Authors:  Wei Cheng, Feng-Shou Zhang     E-mail:  chengwei@bnu.edu.cn;fszhang@bnu.edu.cn

Cite this article: 

Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收) Electronic properties of defects in Weyl semimetal tantalum arsenide 2018 Chin. Phys. B 27 097101

[1] Weyl H 1929 Z. Phys. 56 330
[2] Xu B, Dai Y M, Zhao L X, Wang K, Yang R, Zhang W, Liu J Y, Xiao H, Chen G F, Taylor A J, Yarotski D A, Prasankumar R P and Qiu X G 2016 Phys. Rev. B 93 121110
[3] Deb O and Sen D 2017 Phys. Rev. B 95 144311
[4] Ahn S, Mele E J and Min H 2017 Phys. Rev. B 95 161112
[5] Lu H Z and Shen S Q 2016 Chin. Phys. B 25 117202
[6] He L P and Li S Y 2016 Chin. Phys. B 25 117105
[7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[8] Fang C, Weng H M, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
[9] Hong G H, Wang C W, Jiang J, Chen C, Cui S T, Yang H F, Liang A J, Liu S, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Wang M X, Yang L X, Liu Z K and Chen Y L 2018 Chin. Phys. B 27 17105
[10] Hirayama M, Okugawa R, Ishibashi S, Murakami S and Miyake T 2015 Phys. Rev. Lett. 114 206401
[11] Hosur P and Qi X 2013 C.R. Phys. 14 857
[12] Lee C C, Xu S Y, Huang S M, Sanchez D S, Belopolski I, Chang G, Bian G, Alidoust N, Zheng H, Neupane M, Wang B, Bansil A, Hasan M Z and Lin H 2015 Phys. Rev. B 92 235104
[13] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
[14] Igarashi A and Koshino M 2017 Phys. Rev. B 95 195306
[15] Zyuzin A A and Zyuzin A Y 2017 Phys. Rev. B 95 085127
[16] Shuichi M 2007 New J. Phys. 9 356
[17] Singh B, Sharma A, Lin H, Hasan M Z, Prasad R and Bansil A 2012 Phys. Rev. B 86 115208
[18] Liu J and Vanderbilt D 2014 Phys. Rev. B 90 155316
[19] Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M and Li L 2013 Phys. Rev. Lett. 111 246603
[20] Zyuzin A A, Wu S and Burkov A A 2012 Phys. Rev. B 85 165110
[21] Ojanen T 2013 Phys. Rev. B 87 245112
[22] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[23] Liang A J, Chen C Y, Wang Z J, Shi Y G, Feng Y, Yi H M, Xie Z J, He S L, He J F, Peng Y Y, Liu Y, Liu D, Hu C, Zhao L, Liu G D, Dong X L, Zhang J, Nakatake M, Iwasawa H, Shimada K, Arita M, Namatame H, Taniguchi M, Xu Z Y, Chen C T, Weng H M, Dai X, Fang Z and Zhou X J 2016 Chin. Phys. B 25 77101
[24] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[25] Zhang H, Haule K and Vanderbilt D 2017 Phys. Rev. Lett. 118 26404
[26] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[27] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[28] Hosur P, Parameswaran S A and Vishwanath A 2012 Phys. Rev. Lett. 108 046602
[29] Sun Y, Wu S C and Yan B 2015 Phys. Rev. B 92 115428
[30] Liu Y, Prucnal S, Zhou S Q, Li Z L, Guo L W, Chen X L, Yuan Y, Liu F and Helm M 2016 J. Magn. Magn. Mater. 408 73
[31] Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
[32] Arnold F, Naumann M, Wu S C, Sun Y, Schmidt M, Borrmann H, Felser C, Yan B and Hassinger E 2016 Phys. Rev. Lett. 117 146401
[33] Alidoust M, Halterman K and Zyuzin A A 2017 Phys. Rev. B 95 155124
[34] Klotz J, Wu S C, Shekhar C, Sun Y, Schmidt M, Nicklas M, Baenitz M, Uhlarz M, Wosnitza J, Felser C and Yan B 2016 Phys. Rev. B 93 121105
[35] Arnold F, Shekhar C, Wu S C, Sun Y, dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615
[36] Liu H W, Richard P, Song Z D, Zhao L X, Fang Z, Chen G F and Ding H 2015 Phys. Rev. B 92 064302
[37] Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M and Ding H 2015 Phys. Rev. Lett. 115 217601
[38] Nakayama K, Kuno M, Yamauchi K, Souma S, Sugawara K, Oguchi T, Sato T and Takahashi T 2017 Phys. Rev. B 95 125204
[39] Buckeridge J, Jevdokimovs D, Catlow C R A and Sokol A A 2016 Phys. Rev. B 93 125205
[40] Xu S Y, Belopolski I, Sanchez D S, Neupane M, Chang G, Yaji K, Yuan Z, Zhang C, Kuroda K, Bian G, Guo C, Lu H, Chang T R, Alidoust N, Zheng H, Lee C C, Huang S M, Hsu C H, Jeng H T, Bansil A, Neupert T, Komori F, Kondo T, Shin S, Lin H, Jia S and Hasan M Z 2016 Phys. Rev. Lett. 116 096801
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[43] Sun Y, Zhang Y, Felser C and Yan B 2016 Phys. Rev. Lett. 117 146403
[44] Lu M C, Guo Y N, Zhang M, Liu H Y and Tse J S 2016 Solid State Commun. 240 37
[45] Gonze X 1995 Phys. Rev. A 52 1096
[46] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[47] Yu Z G and Zhang Y W 2016 Phys. Rev. B 94 195206
[48] Buckeridge J and Jevdokimovs D 2016 Phys. Rev. B 94 180101
[49] Hong J H, Hu Z X, Probert M, Li K, Lv D H, Yang X N, Gu L, Mao N N, Feng Q L, Xie L M, Zhang J, Wu D Z, Zhang Z Y, Jin C H, Ji W, Zhang X X, Yuan J and Zhang Z 2015 Nat. Commun. 6 18
[50] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[12] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!