CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic properties of defects in Weyl semimetal tantalum arsenide |
Yan-Long Fu(付艳龙)1,2, Chang-Kai Li(李长楷)1,2, Zhao-Jun Zhang(张昭军)1,2, Hai-Bo Sang(桑海波)1,2, Wei Cheng(程伟)1,2,4, Feng-Shou Zhang(张丰收)1,2,3 |
1 Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Beijing Radiation Center, Beijing 100875, China;
3 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China;
4 Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract The tantalum arsenide (TaAs) is a topological Weyl semimetal which is a class of materials of gapless with three-dimensional topological structure. In order to develop a comprehensive description of the topological properties of the Weyl semimetal, we use the density functional theory to study several defects of TaAs after H irradiation and report the electronic dispersion curves and the density of states of these defects. We find that various defects have different influences on the topological properties. Interstitial H atom can shift the Fermi level. Both Ta vacancy with a concentration of 1/64 and As vacancy with a concentration of 1/64 destruct a part of the Weyl points. The substitutional H atom on a Ta site could repair only a part of the Weyl points, while H atom on an As site could repair all the Weyl points.
|
Received: 23 March 2018
Revised: 20 June 2018
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11635003, 11025524, and 11161130520), the National Basic Research Program of China (Grant No. 2010CB832903), and the European Commissions of 7th Framework Programme (FP7-PEOPLE-2010-IRSES) (Grant No. 269131). |
Corresponding Authors:
Wei Cheng, Feng-Shou Zhang
E-mail: chengwei@bnu.edu.cn;fszhang@bnu.edu.cn
|
Cite this article:
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收) Electronic properties of defects in Weyl semimetal tantalum arsenide 2018 Chin. Phys. B 27 097101
|
[1] |
Weyl H 1929 Z. Phys. 56 330
|
[2] |
Xu B, Dai Y M, Zhao L X, Wang K, Yang R, Zhang W, Liu J Y, Xiao H, Chen G F, Taylor A J, Yarotski D A, Prasankumar R P and Qiu X G 2016 Phys. Rev. B 93 121110
|
[3] |
Deb O and Sen D 2017 Phys. Rev. B 95 144311
|
[4] |
Ahn S, Mele E J and Min H 2017 Phys. Rev. B 95 161112
|
[5] |
Lu H Z and Shen S Q 2016 Chin. Phys. B 25 117202
|
[6] |
He L P and Li S Y 2016 Chin. Phys. B 25 117105
|
[7] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[8] |
Fang C, Weng H M, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
|
[9] |
Hong G H, Wang C W, Jiang J, Chen C, Cui S T, Yang H F, Liang A J, Liu S, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Wang M X, Yang L X, Liu Z K and Chen Y L 2018 Chin. Phys. B 27 17105
|
[10] |
Hirayama M, Okugawa R, Ishibashi S, Murakami S and Miyake T 2015 Phys. Rev. Lett. 114 206401
|
[11] |
Hosur P and Qi X 2013 C.R. Phys. 14 857
|
[12] |
Lee C C, Xu S Y, Huang S M, Sanchez D S, Belopolski I, Chang G, Bian G, Alidoust N, Zheng H, Neupane M, Wang B, Bansil A, Hasan M Z and Lin H 2015 Phys. Rev. B 92 235104
|
[13] |
Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
|
[14] |
Igarashi A and Koshino M 2017 Phys. Rev. B 95 195306
|
[15] |
Zyuzin A A and Zyuzin A Y 2017 Phys. Rev. B 95 085127
|
[16] |
Shuichi M 2007 New J. Phys. 9 356
|
[17] |
Singh B, Sharma A, Lin H, Hasan M Z, Prasad R and Bansil A 2012 Phys. Rev. B 86 115208
|
[18] |
Liu J and Vanderbilt D 2014 Phys. Rev. B 90 155316
|
[19] |
Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M and Li L 2013 Phys. Rev. Lett. 111 246603
|
[20] |
Zyuzin A A, Wu S and Burkov A A 2012 Phys. Rev. B 85 165110
|
[21] |
Ojanen T 2013 Phys. Rev. B 87 245112
|
[22] |
Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
|
[23] |
Liang A J, Chen C Y, Wang Z J, Shi Y G, Feng Y, Yi H M, Xie Z J, He S L, He J F, Peng Y Y, Liu Y, Liu D, Hu C, Zhao L, Liu G D, Dong X L, Zhang J, Nakatake M, Iwasawa H, Shimada K, Arita M, Namatame H, Taniguchi M, Xu Z Y, Chen C T, Weng H M, Dai X, Fang Z and Zhou X J 2016 Chin. Phys. B 25 77101
|
[24] |
Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
|
[25] |
Zhang H, Haule K and Vanderbilt D 2017 Phys. Rev. Lett. 118 26404
|
[26] |
Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
|
[27] |
Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
|
[28] |
Hosur P, Parameswaran S A and Vishwanath A 2012 Phys. Rev. Lett. 108 046602
|
[29] |
Sun Y, Wu S C and Yan B 2015 Phys. Rev. B 92 115428
|
[30] |
Liu Y, Prucnal S, Zhou S Q, Li Z L, Guo L W, Chen X L, Yuan Y, Liu F and Helm M 2016 J. Magn. Magn. Mater. 408 73
|
[31] |
Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
|
[32] |
Arnold F, Naumann M, Wu S C, Sun Y, Schmidt M, Borrmann H, Felser C, Yan B and Hassinger E 2016 Phys. Rev. Lett. 117 146401
|
[33] |
Alidoust M, Halterman K and Zyuzin A A 2017 Phys. Rev. B 95 155124
|
[34] |
Klotz J, Wu S C, Shekhar C, Sun Y, Schmidt M, Nicklas M, Baenitz M, Uhlarz M, Wosnitza J, Felser C and Yan B 2016 Phys. Rev. B 93 121105
|
[35] |
Arnold F, Shekhar C, Wu S C, Sun Y, dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615
|
[36] |
Liu H W, Richard P, Song Z D, Zhao L X, Fang Z, Chen G F and Ding H 2015 Phys. Rev. B 92 064302
|
[37] |
Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M and Ding H 2015 Phys. Rev. Lett. 115 217601
|
[38] |
Nakayama K, Kuno M, Yamauchi K, Souma S, Sugawara K, Oguchi T, Sato T and Takahashi T 2017 Phys. Rev. B 95 125204
|
[39] |
Buckeridge J, Jevdokimovs D, Catlow C R A and Sokol A A 2016 Phys. Rev. B 93 125205
|
[40] |
Xu S Y, Belopolski I, Sanchez D S, Neupane M, Chang G, Yaji K, Yuan Z, Zhang C, Kuroda K, Bian G, Guo C, Lu H, Chang T R, Alidoust N, Zheng H, Lee C C, Huang S M, Hsu C H, Jeng H T, Bansil A, Neupert T, Komori F, Kondo T, Shin S, Lin H, Jia S and Hasan M Z 2016 Phys. Rev. Lett. 116 096801
|
[41] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[42] |
Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
|
[43] |
Sun Y, Zhang Y, Felser C and Yan B 2016 Phys. Rev. Lett. 117 146403
|
[44] |
Lu M C, Guo Y N, Zhang M, Liu H Y and Tse J S 2016 Solid State Commun. 240 37
|
[45] |
Gonze X 1995 Phys. Rev. A 52 1096
|
[46] |
Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
|
[47] |
Yu Z G and Zhang Y W 2016 Phys. Rev. B 94 195206
|
[48] |
Buckeridge J and Jevdokimovs D 2016 Phys. Rev. B 94 180101
|
[49] |
Hong J H, Hu Z X, Probert M, Li K, Lv D H, Yang X N, Gu L, Mao N N, Feng Q L, Xie L M, Zhang J, Wu D Z, Zhang Z Y, Jin C H, Ji W, Zhang X X, Yuan J and Zhang Z 2015 Nat. Commun. 6 18
|
[50] |
Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|