Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 097102    DOI: 10.1088/1674-1056/26/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device

Yong-Chen Xiong(熊永臣)1,2, Jun Zhang(张俊)1, Wang-Huai Zhou(周望怀)1, Amel Laref1,3
1 School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, China;
2 Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore;
3 Department of Physics and Astronomy, Science Faculty, King Saud University, Riyadh 11451, Saudi Arabia
Abstract  

The transport property and phase transition for a parallel triple dot device are studied by adopting Wilson's numerical renormalization group technique, focusing on the effects of level spacings between neighboring dot sites. By keeping dot 2 at the half-filled level and tuning the level differences, it is demonstrated that the system transits from local spin quadruplet to triplet and doublet sequently, and three kinds of Kondo peaks at the Fermi surface could be found, which are separated by two Kosterlitz-Thouless type quantum phase transitions and correspond to spin-3/2, spin-1, and spin-1/2 Kondo effect, respectively. To obtain a detailed understanding of these problems, the charge occupation, the spin-spin correlation, the transmission coefficient, and the temperature-dependent magnetic moment are shown, and necessary physical arguments are given.

Keywords:  triple quantum dot      Kosterlitz-Thouless transition      Kondo effect      critical phenomena  
Received:  02 May 2017      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.35.-p (Nanoelectronic devices)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11504102), the Scientific Research Items Foundation of Hubei Educational Committee, China (Grant Nos. Q20161803 and B2016091), the Doctoral Scientific Research Foundation (Grant No. BK201407), and the Major Scientific Research Project Pre-funds of Hubei University of Automotive Technology, China (Grant No. 2014XY06).

Corresponding Authors:  Yong-Chen Xiong     E-mail:  xiongyc_lx@huat.edu.cn

Cite this article: 

Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device 2017 Chin. Phys. B 26 097102

[1] Vidan A, Westervelt R M, Stopa M, Hanson M and Gossard A C 2004 Appl. Phys. Lett. 85 3602
[2] Schröer D, Greentree A D, Gaudreau L, Eberl K, Hollenberg L C L, Kotthaus J P and Ludwig S 2007 Phys. Rev. B 76 075306
[3] Amaha S, Hatano T, Teraoka S, Tarucha S, Tokura Y, Miyazaki T, Oshima T, Usuki t, Yokoyama N 2008 Appl. Phys. Lett. 92 202109
[4] Gaudreau L, Kam A, Granger G, Studenikin S A, Zawadzki P and Sachrajda A S 2009 Appl. Phys. Lett. 95 193101
[5] Takakura T, Pioro-Ladriére M, Obata T, Shin Y S, Brunner R, Yoshida K, Taniyama T and Tarucha S 2010 Appl. Phys. Lett. 97 212104
[6] Gaudreau L, Granger G, Kam A, Aers G C, Studenikin S A, Zawadzki P, Pioro-Ladriére M, Wasilewski Z R and Sachrajda A S 2012 Nat. Phys. 8 54
[7] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[8] Prinz G A 1998 Science 282 1660
[9] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes K L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[10] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[11] DiVincenzo D P 2005 Science 309 2173
[12] Delgado F, Shim Y P, Korkusinski M, Gaudreau L, Studenikin S A, Sachrajda A S and Hawrylak P 2008 Phys. Rev. Lett. 101 226810
[13] Wang W Z 2008 Phys. Rev. B 78 235316
[14] Anderson P W 1973 Mater. Res. Bull. 8 153
[15] Wang W Z 2007 Phys. Rev. B 76 115114
[16] Kuzmenko T, Kikoin K and Avishai Y 2003 Europhys. Lett. 64 218
[17] Žitko R and Bonča J 2008 Phys. Rev. B 77 245112
[18] Mitchell A K, Logan D E and Krishnamurthy H R 2011 Phys. Rev. B 84 035119
[19] Mitchell A K, Galpin M R, Wilson-Fletcher S, Logan D E and Bulla R 2014 Phys. Rev. B 89 121105(R)
[20] Tooski S B, Ramšak A and Bulka B R 2016 Physica E 82 366
[21] Žitko R and Bonča J 2006 Phys. Rev. B 74 045312
[22] Xiong Y C, Wang W Z, Luo S J, Yang J T and Huang H M 2016 J. Magn. Magn. Mater. 399 5
[23] Ladrón de Guevara M L and Orellana P A 2006 Phys. Rev. B 73 205303
[24] Webb R A, Washburn S, Umbach C P and Laibowitz R B 1985 Phys. Rev. Lett. 54 2696
[25] Fu H H and Yao K L 2010 J. Appl. Phys. 108 084510
[26] Huang R, Ming S W and Wang Y 2012 Chin. Phys. Lett. 29 47201
[27] Žitko R and Bonča J 2007 Phys. Rev. B 76 241305(R)
[28] Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
[29] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
[30] Mitchell A K, Jarrold T F, Galpin M R and Logan D E 2013 J. Phys. Chem. B 117 12777
[31] Xiong Y C, Huang J and Wang W Z 2012 J. Phys.: Condens. Matter. 24 455604
[32] Xiong Y C, Wang W Z, Yang J T and Huang H M 2015 Chin. Phys. B 24 027501
[33] Hofstetter W and Schoeller H 2001 Phys. Rev. Lett. 88 016803
[34] Wang W Z 2011 Nanotechnology 22 205203
[35] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71 205313
[36] Sindel M, Silva A, Oreg Y and von Delft J 2005 Phys. Rev. B 72 125316
[37] Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fedorov A and Wallraff A 2013 Nature 500 319
[38] Medford J, Beil J, Taylor J M, Rashba E I, Lu H, Gossard A C and Marcus C M 2013 Phys. Rev. Lett. 111 050501
[39] Medford J, Beil J, Taylor J M, Bartlett S D, Doherty A C, Rashba E I, DiVincenzo D P, Lu H, Gossard A C and Marcus C M 2013 Nat. Nanotechnol. 8 654
[40] Takakura T, A Noiri, Obata T, Otsuka T, Yoneda J, Yoshida K and Tarucha S 2014 Appl. Phys. Lett. 104 113109
[41] Noiri A, Yoneda J, Nakajima T, Otsuka T, Delbecq M R, Takeda K, Amaha S, Allison G, Ludwig A, Wieck A D and Tarucha S 2016 Appl. Phys. Lett. 108 153101
[42] Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
[43] Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
[44] Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
[45] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
[46] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[1] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[2] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[3] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[4] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[5] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[6] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[7] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[8] Kosterlitz-Thouless transition, spectral property and magnetic moment for a two-dot structure with level difference
Yong-Chen Xiong(熊永臣), Wang-Huai Zhou(周望怀), Jun Zhang(张俊), Nan Nan(南楠). Chin. Phys. B, 2017, 26(6): 067501.
[9] Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin-orbital interaction
Wei-Ping Xu(徐卫平), Yu-Ying Zhang(张玉颖), Qiang Wang(王强), Yi-Hang Nie(聂一行). Chin. Phys. B, 2016, 25(11): 117307.
[10] Interaction and local magnetic moments of metal phthalocyanine and tetraphenylporphyrin molecules on noble metal surfaces
Song Bo-Qun (宋博群), Pan Li-Da (潘理达), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2013, 22(9): 096801.
[11] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
[12] Transport through artificial single-molecule magnets: Spin-pair state sequential tunneling and Kondo effects
Niu Peng-Bin (牛鹏斌), Wang Qiang (王强), Nie Yi-Hang (聂一行). Chin. Phys. B, 2013, 22(2): 027307.
[13] Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube
H. Magoussi, A. Zaim, M. Kerouad. Chin. Phys. B, 2013, 22(11): 116401.
[14] Transition from the Kondo effect to a Coulomb blockade in an electron shuttle
Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁). Chin. Phys. B, 2013, 22(11): 117305.
[15] Universal critical properties of the Eulerian bond-cubic model
Ding Cheng-Xiang(丁成祥), Yao Gui-Yuan(姚桂元), Li Song(李崧), Deng You-Jin(邓友金), and Guo Wen-An(郭文安) . Chin. Phys. B, 2011, 20(7): 070504.
No Suggested Reading articles found!