CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device |
Yong-Chen Xiong(熊永臣)1,2, Jun Zhang(张俊)1, Wang-Huai Zhou(周望怀)1, Amel Laref1,3 |
1 School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, China;
2 Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore;
3 Department of Physics and Astronomy, Science Faculty, King Saud University, Riyadh 11451, Saudi Arabia |
|
|
Abstract The transport property and phase transition for a parallel triple dot device are studied by adopting Wilson's numerical renormalization group technique, focusing on the effects of level spacings between neighboring dot sites. By keeping dot 2 at the half-filled level and tuning the level differences, it is demonstrated that the system transits from local spin quadruplet to triplet and doublet sequently, and three kinds of Kondo peaks at the Fermi surface could be found, which are separated by two Kosterlitz-Thouless type quantum phase transitions and correspond to spin-3/2, spin-1, and spin-1/2 Kondo effect, respectively. To obtain a detailed understanding of these problems, the charge occupation, the spin-spin correlation, the transmission coefficient, and the temperature-dependent magnetic moment are shown, and necessary physical arguments are given.
|
Received: 02 May 2017
Accepted manuscript online:
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504102), the Scientific Research Items Foundation of Hubei Educational Committee, China (Grant Nos. Q20161803 and B2016091), the Doctoral Scientific Research Foundation (Grant No. BK201407), and the Major Scientific Research Project Pre-funds of Hubei University of Automotive Technology, China (Grant No. 2014XY06). |
Corresponding Authors:
Yong-Chen Xiong
E-mail: xiongyc_lx@huat.edu.cn
|
Cite this article:
Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device 2017 Chin. Phys. B 26 097102
|
[1] |
Vidan A, Westervelt R M, Stopa M, Hanson M and Gossard A C 2004 Appl. Phys. Lett. 85 3602
|
[2] |
Schröer D, Greentree A D, Gaudreau L, Eberl K, Hollenberg L C L, Kotthaus J P and Ludwig S 2007 Phys. Rev. B 76 075306
|
[3] |
Amaha S, Hatano T, Teraoka S, Tarucha S, Tokura Y, Miyazaki T, Oshima T, Usuki t, Yokoyama N 2008 Appl. Phys. Lett. 92 202109
|
[4] |
Gaudreau L, Kam A, Granger G, Studenikin S A, Zawadzki P and Sachrajda A S 2009 Appl. Phys. Lett. 95 193101
|
[5] |
Takakura T, Pioro-Ladriére M, Obata T, Shin Y S, Brunner R, Yoshida K, Taniyama T and Tarucha S 2010 Appl. Phys. Lett. 97 212104
|
[6] |
Gaudreau L, Granger G, Kam A, Aers G C, Studenikin S A, Zawadzki P, Pioro-Ladriére M, Wasilewski Z R and Sachrajda A S 2012 Nat. Phys. 8 54
|
[7] |
Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[8] |
Prinz G A 1998 Science 282 1660
|
[9] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes K L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[10] |
Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
|
[11] |
DiVincenzo D P 2005 Science 309 2173
|
[12] |
Delgado F, Shim Y P, Korkusinski M, Gaudreau L, Studenikin S A, Sachrajda A S and Hawrylak P 2008 Phys. Rev. Lett. 101 226810
|
[13] |
Wang W Z 2008 Phys. Rev. B 78 235316
|
[14] |
Anderson P W 1973 Mater. Res. Bull. 8 153
|
[15] |
Wang W Z 2007 Phys. Rev. B 76 115114
|
[16] |
Kuzmenko T, Kikoin K and Avishai Y 2003 Europhys. Lett. 64 218
|
[17] |
Žitko R and Bonča J 2008 Phys. Rev. B 77 245112
|
[18] |
Mitchell A K, Logan D E and Krishnamurthy H R 2011 Phys. Rev. B 84 035119
|
[19] |
Mitchell A K, Galpin M R, Wilson-Fletcher S, Logan D E and Bulla R 2014 Phys. Rev. B 89 121105(R)
|
[20] |
Tooski S B, Ramšak A and Bulka B R 2016 Physica E 82 366
|
[21] |
Žitko R and Bonča J 2006 Phys. Rev. B 74 045312
|
[22] |
Xiong Y C, Wang W Z, Luo S J, Yang J T and Huang H M 2016 J. Magn. Magn. Mater. 399 5
|
[23] |
Ladrón de Guevara M L and Orellana P A 2006 Phys. Rev. B 73 205303
|
[24] |
Webb R A, Washburn S, Umbach C P and Laibowitz R B 1985 Phys. Rev. Lett. 54 2696
|
[25] |
Fu H H and Yao K L 2010 J. Appl. Phys. 108 084510
|
[26] |
Huang R, Ming S W and Wang Y 2012 Chin. Phys. Lett. 29 47201
|
[27] |
Žitko R and Bonča J 2007 Phys. Rev. B 76 241305(R)
|
[28] |
Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
|
[29] |
Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
|
[30] |
Mitchell A K, Jarrold T F, Galpin M R and Logan D E 2013 J. Phys. Chem. B 117 12777
|
[31] |
Xiong Y C, Huang J and Wang W Z 2012 J. Phys.: Condens. Matter. 24 455604
|
[32] |
Xiong Y C, Wang W Z, Yang J T and Huang H M 2015 Chin. Phys. B 24 027501
|
[33] |
Hofstetter W and Schoeller H 2001 Phys. Rev. Lett. 88 016803
|
[34] |
Wang W Z 2011 Nanotechnology 22 205203
|
[35] |
Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71 205313
|
[36] |
Sindel M, Silva A, Oreg Y and von Delft J 2005 Phys. Rev. B 72 125316
|
[37] |
Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fedorov A and Wallraff A 2013 Nature 500 319
|
[38] |
Medford J, Beil J, Taylor J M, Rashba E I, Lu H, Gossard A C and Marcus C M 2013 Phys. Rev. Lett. 111 050501
|
[39] |
Medford J, Beil J, Taylor J M, Bartlett S D, Doherty A C, Rashba E I, DiVincenzo D P, Lu H, Gossard A C and Marcus C M 2013 Nat. Nanotechnol. 8 654
|
[40] |
Takakura T, A Noiri, Obata T, Otsuka T, Yoneda J, Yoshida K and Tarucha S 2014 Appl. Phys. Lett. 104 113109
|
[41] |
Noiri A, Yoneda J, Nakajima T, Otsuka T, Delbecq M R, Takeda K, Amaha S, Allison G, Ludwig A, Wieck A D and Tarucha S 2016 Appl. Phys. Lett. 108 153101
|
[42] |
Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
|
[43] |
Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
|
[44] |
Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
|
[45] |
Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
|
[46] |
Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|