CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Phase diagram characterized by transmission in a triangular quantum dot |
Jin Huang(黄金), Wei-Zhong Wang(王为忠) |
Department of Physics, Wuhan University, Wuhan 430072, China |
|
|
Abstract We propose a theoretical model to detect the quantum phase transition in a triangular quantum dot molecule with frustration. The boundaries of the phase diagram are accurately determined by the transmission. For small frustration t, as the interdot Coulomb repulsion V increases, the system undergoes a Kosterlitz-Thouless (KT) transition from the Kondo resonance state with a transmission peak at zero energy to the Coulomb blocked state with zero transmission, which is followed by a first transition to the V-induced resonance (VIR) state with unitary transmission. For large frustration t, as V increases, the orbital spin singlet without transmission transits to the VIR state through a KT transition.
|
Received: 20 June 2018
Revised: 05 September 2018
Accepted manuscript online:
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
72.15.Qm
|
(Scattering mechanisms and Kondo effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174228 and 10874132). |
Corresponding Authors:
Wei-Zhong Wan
E-mail: wzwang@whu.edu.cn
|
Cite this article:
Jin Huang(黄金), Wei-Zhong Wang(王为忠) Phase diagram characterized by transmission in a triangular quantum dot 2018 Chin. Phys. B 27 117303
|
[1] |
Cornaglia P S and Grempel D R 2005 Phys. Rev. B 71 075305
|
[2] |
Dias da Silva L G G V, Sandler N P, Ingersent K and Ulloa S E 2006 Phys. Rev. Lett. 97 096603
|
[3] |
Mravlje J, Ramsak A and Rejec T 2006 Phys. Rev. B 73 241305
|
[4] |
Logan D E, Wright C J, and Galpin M R 2009 Phys. Rev. B 80 125117
|
[5] |
Chung C H, Zarand G, and Wolfle P 2008 Phys. Rev. B 77 035120
|
[6] |
Kuzmenko T, Kikoin K and Avishai Y 2006 Phys. Rev. Lett. 96 046601
|
[7] |
Kuzmenko T, Kikoin K and Avishai Y 2006 Phys. Rev. B 73 235310
|
[8] |
Žitko R and Bonca J 2007 Phys. Rev. Lett. 98 047203
|
[9] |
Ingersent K, Ludwig A W W and Affleck I 2005 Phys. Rev. Lett. 95 257204
|
[10] |
Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
|
[11] |
Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
|
[12] |
Vernek E, Orellana P A, and Ulloa S E 2010 Phys. Rev. B 82 165304
|
[13] |
Wang W Z 2007 Phys. Rev. B 76 115114.
|
[14] |
Xiong Y C, Zhang J, Zhou W H and Laref A 2017 Chin. Phys. B 26 097102
|
[15] |
Chen J C, Chang A M and Melloch M R 2004 Phys. Rev. Lett. 92 176801
|
[16] |
Roch N, Florens S, Bouchiat V, Wernsdorfer W and Balestro F 2008 Nature 453 633
|
[17] |
Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, Kam A, Lapointe J, Korkusinski M and Hawrylak P 2006 Phys. Rev. Lett. 97 036807
|
[18] |
Rogge M C and Haug R J 2008 Phys. Rev. B 77 193306
|
[19] |
Amaha S, Hatano T, Kubo T, Teraoka S, Tokura T, Tarucha S and Austing D G 2009 Appl. Phys. Lett. 94 092103
|
[20] |
Cockins L, Miyahara Y, Bennett S D, Clerk A A, Studenikin S, Poole P, Sachrajda A and Grutter P 2010 PNAS 107 9496
|
[21] |
Pierre M, Wacquez R, Roche B, Jehl X, Sanquer M, Vinet M, Prati E, Belli M and Fanciulli M 2009 Appl. Phys. Lett. 95 242107
|
[22] |
Granger G, Gaudreau L, Kam A, Pioro-Ladri'ere M, Studenikin S A, Wasilewski Z R, Zawadzki P and Sachrajda A S 2010 Phys. Rev. B 82 075304
|
[23] |
Amaha S, Hatano T, Tamura H, Teraoka S, Kubo T, Tokura Y, Austing D G and Tarucha S 2012 Phys. Rev. B 85 081301(R)
|
[24] |
Žitko R and Bonca J 2008 Phys. Rev. B 77 245112
|
[25] |
Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
|
[26] |
Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
|
[27] |
Numata T, Nisikawa Y, Oguri A and Hewson A C 2009 Phys. Rev. B 80 155330
|
[28] |
Oguri A, Amaha S, Nishikawa Y, Numata T, Shimamoto M, Hewson A C and Tarucha S 2011 Phys. Rev. B 83 205304
|
[29] |
Vernek E, Büsser C A, Martins G B, Anda E V, Sandler N and Ulloa S E 2009 Phys. Rev. B 80 035119
|
[30] |
Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
|
[31] |
Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
|
[32] |
Hofstetter W 2000 Phys. Rev. Lett. 85 1508
|
[33] |
Hofstetter W and Schoeller H 2001 Phys. Rev. Lett. 88 016803
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|