Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117303    DOI: 10.1088/1674-1056/27/11/117303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase diagram characterized by transmission in a triangular quantum dot

Jin Huang(黄金), Wei-Zhong Wang(王为忠)
Department of Physics, Wuhan University, Wuhan 430072, China
Abstract  

We propose a theoretical model to detect the quantum phase transition in a triangular quantum dot molecule with frustration. The boundaries of the phase diagram are accurately determined by the transmission. For small frustration t, as the interdot Coulomb repulsion V increases, the system undergoes a Kosterlitz-Thouless (KT) transition from the Kondo resonance state with a transmission peak at zero energy to the Coulomb blocked state with zero transmission, which is followed by a first transition to the V-induced resonance (VIR) state with unitary transmission. For large frustration t, as V increases, the orbital spin singlet without transmission transits to the VIR state through a KT transition.

Keywords:  quantum dots      quantum phase transition      Kondo effect      transmission  
Received:  20 June 2018      Revised:  05 September 2018      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  72.15.Qm (Scattering mechanisms and Kondo effect)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174228 and 10874132).

Corresponding Authors:  Wei-Zhong Wan     E-mail:  wzwang@whu.edu.cn

Cite this article: 

Jin Huang(黄金), Wei-Zhong Wang(王为忠) Phase diagram characterized by transmission in a triangular quantum dot 2018 Chin. Phys. B 27 117303

[1] Cornaglia P S and Grempel D R 2005 Phys. Rev. B 71 075305
[2] Dias da Silva L G G V, Sandler N P, Ingersent K and Ulloa S E 2006 Phys. Rev. Lett. 97 096603
[3] Mravlje J, Ramsak A and Rejec T 2006 Phys. Rev. B 73 241305
[4] Logan D E, Wright C J, and Galpin M R 2009 Phys. Rev. B 80 125117
[5] Chung C H, Zarand G, and Wolfle P 2008 Phys. Rev. B 77 035120
[6] Kuzmenko T, Kikoin K and Avishai Y 2006 Phys. Rev. Lett. 96 046601
[7] Kuzmenko T, Kikoin K and Avishai Y 2006 Phys. Rev. B 73 235310
[8] Žitko R and Bonca J 2007 Phys. Rev. Lett. 98 047203
[9] Ingersent K, Ludwig A W W and Affleck I 2005 Phys. Rev. Lett. 95 257204
[10] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
[11] Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
[12] Vernek E, Orellana P A, and Ulloa S E 2010 Phys. Rev. B 82 165304
[13] Wang W Z 2007 Phys. Rev. B 76 115114.
[14] Xiong Y C, Zhang J, Zhou W H and Laref A 2017 Chin. Phys. B 26 097102
[15] Chen J C, Chang A M and Melloch M R 2004 Phys. Rev. Lett. 92 176801
[16] Roch N, Florens S, Bouchiat V, Wernsdorfer W and Balestro F 2008 Nature 453 633
[17] Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, Kam A, Lapointe J, Korkusinski M and Hawrylak P 2006 Phys. Rev. Lett. 97 036807
[18] Rogge M C and Haug R J 2008 Phys. Rev. B 77 193306
[19] Amaha S, Hatano T, Kubo T, Teraoka S, Tokura T, Tarucha S and Austing D G 2009 Appl. Phys. Lett. 94 092103
[20] Cockins L, Miyahara Y, Bennett S D, Clerk A A, Studenikin S, Poole P, Sachrajda A and Grutter P 2010 PNAS 107 9496
[21] Pierre M, Wacquez R, Roche B, Jehl X, Sanquer M, Vinet M, Prati E, Belli M and Fanciulli M 2009 Appl. Phys. Lett. 95 242107
[22] Granger G, Gaudreau L, Kam A, Pioro-Ladri'ere M, Studenikin S A, Wasilewski Z R, Zawadzki P and Sachrajda A S 2010 Phys. Rev. B 82 075304
[23] Amaha S, Hatano T, Tamura H, Teraoka S, Kubo T, Tokura Y, Austing D G and Tarucha S 2012 Phys. Rev. B 85 081301(R)
[24] Žitko R and Bonca J 2008 Phys. Rev. B 77 245112
[25] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
[26] Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
[27] Numata T, Nisikawa Y, Oguri A and Hewson A C 2009 Phys. Rev. B 80 155330
[28] Oguri A, Amaha S, Nishikawa Y, Numata T, Shimamoto M, Hewson A C and Tarucha S 2011 Phys. Rev. B 83 205304
[29] Vernek E, Büsser C A, Martins G B, Anda E V, Sandler N and Ulloa S E 2009 Phys. Rev. B 80 035119
[30] Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
[31] Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
[32] Hofstetter W 2000 Phys. Rev. Lett. 85 1508
[33] Hofstetter W and Schoeller H 2001 Phys. Rev. Lett. 88 016803
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[11] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[12] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[13] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[14] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[15] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
No Suggested Reading articles found!