CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots |
Fu-Li Sun(孙复莉)1, Yuan-Dong Wang(王援东)1, Jian-Hua Wei(魏建华)1, Yi-Jing Yan(严以京)2 |
1 Department of Physics & Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We report capacitive coupling induced Kondo-Fano (K-F) interference in a double quantum dot (DQD) by systematically investigating its low-temperature properties on the basis of hierarchical equations of motion evaluations. We show that the interdot capacitive coupling U12 splits the singly-occupied (S-O) state in quantum dot 1 (QD1) into three quasi-particle substates: the unshifted S-O0 substate, and elevated S-O1 and S-O2. As U12 increases, S-O2 and S-O1 successively cross through the Kondo resonance state at the Fermi level (ω=0), resulting in the so-called Kondo-I (KI), K-F, and Kondo-II (KII) regimes. While both the KI and KII regimes have the conventional Kondo resonance properties, remarkable Kondo-Fano interference features are shown in the K-F regime. In the view of scattering, we propose that the phase shift η(ω) is suitable for analysis of the Kondo-Fano interference. We present a general approach for calculating η(ω) and applying it to the DQD in the K-F regime where the two maxima of η(ω=0) characterize the interferences between the Kondo resonance state and S-O2 and S-O1 substates, respectively.
|
Received: 21 February 2020
Revised: 17 April 2020
Accepted manuscript online:
|
PACS:
|
72.15.Qm
|
(Scattering mechanisms and Kondo effect)
|
|
73.63.Kv
|
(Quantum dots)
|
|
75.20.Hr
|
(Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774418, 11374363, and 21373191). |
Corresponding Authors:
Jian-Hua Wei
E-mail: wjh@ruc.edu.cn
|
Cite this article:
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京) Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots 2020 Chin. Phys. B 29 067204
|
[1] |
Kondo J 1964 Prog. Theor. Phys. 32 37
|
[2] |
Costi T A, Hewson A C and Zlatić 1994 J. Phys.: Condens. Matter 6 2519
|
[3] |
Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) pp. 47-65
|
[4] |
Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett. 109 266403
|
[5] |
Li J, Schneider W D, Berndt R and Delley B 1998 Phys. Rev. Lett. 80 2893
|
[6] |
Göres J, Goldhaber-Gordon D, Heemeyer S, Kastner M A, Shtrikman H, Mahalu D and Meirav U 2000 Phys. Rev. B 62 2188
|
[7] |
Zacharia I G, Goldhaber-Gordon D, Granger G, Kastner M A, Khavin Y B, Shtrikman H, Mahalu D and Meirav U 2001 Phys. Rev. B 64 155311
|
[8] |
Sasaki S, Tamura H, Akazaki T and Fujisawa T 2009 Phys. Rev. Lett. 103 266806
|
[9] |
Žitko R 2010 Phys. Rev. B 81 115316
|
[10] |
Oreg Y and Goldhaber-Gordon D 2003 Phys. Rev. Lett. 90 136602
|
[11] |
Lebanon E, Schiller A and Anders F B 2003 Phys. Rev. B 68 155301
|
[12] |
Cornaglia P S and Grempel D R 2005 Phys. Rev. B 71 075305
|
[13] |
Žitko R and Bonča J 2006 Phys. Rev. B 73 035332
|
[14] |
Žitko R and Bonča J 2007 J. Phys.: Condens. Matter 19 255205
|
[15] |
Chung C H, Zarand G and Wölfle P 2008 Phys. Rev. B 77 035120
|
[16] |
Chung C H and Lee T H 2010 Phys. Rev. B 82 085325
|
[17] |
Tanaka Y, Kawakami N and Oguri A 2012 Phys. Rev. B 85 155314
|
[18] |
Andrade J A, Cornaglia P S and Aligia A A 2014 Phys. Rev. B 89 115110
|
[19] |
Chan I H, Westervelt R M, Maranowski K D and Gossard A C 2002 Appl. Phys. Lett. 80 1818
|
[20] |
Chan I H, Fallahi P, Westervelt R M, Maranowski K D and Gossard A C 2003 Physica E 17 584
|
[21] |
Holleitner A W, Blick R H and Eberl K 2003 Appl. Phys. Lett. 82 1887
|
[22] |
McClure D T, DiCarlo L, Zhang Y, Engel H A, Marcus C M, Hanson M P and Gossard A C 2007 Phys. Rev. Lett. 98 056801
|
[23] |
Hübel A, Weis J, Dietsche W and Klitzing K v 2007 Appl. Phys. Lett. 91 102101
|
[24] |
Hübel A, Held K, Weis J and Klitzing K v 2008 Phys. Rev. Lett. 101 186804
|
[25] |
Okazaki Y, Sasaki S and Muraki K 2011 Phys. Rev. B 84 161305
|
[26] |
López R, Aguado R and Platero G 2002 Phys. Rev. Lett. 89 136802
|
[27] |
Mravlje J, Ramsak A and Rejec T 2006 Phys. Rev. B. 73 241305
|
[28] |
Lipinski S and Krychowski D 2007 J. Magn. Magn. Mater. 310 2423
|
[29] |
Hatano T, Amaha S, Kubo T, Teraoka S, Tokura Y, Gupta J A, Austing D G and Tarucha S 2010 Appl. Phys. Lett. 97 062108
|
[30] |
Ruiz-Tijerina D A, Vernek E and Ulloa S E 2014 Phys. Rev. B 90 035119
|
[31] |
Galpin M R, Logan D E and Krishnamurthy H R 2005 Phys. Rev. Lett. 94186406
|
[32] |
Krychowski D, Florkow P, Antkiewicz M and Lipinski S 2018 Phys. E 98 74
|
[33] |
Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys. 128 234703
|
[34] |
Camacho G, Schmitteckert P and Carr S T 2019 Phys. Rev. B 99 085122
|
[35] |
Luo H G, Xiang T, Wang X Q, Su Z B and Yu L 2004 Phys. Rev. Lett. 92 256602
|
[36] |
Luo H G, Xiang T, Wang X Q, Su Z B and Yu L 2006 Phys. Rev. Lett. 96 019702
|
[37] |
Wei J H and Yan Y J 2011 arXiv:1108.5955
|
[38] |
Li Z H, Cheng Y X, Wei J H, Zheng X and Yan Y J 2018 Phys. Rev. B 98 115133
|
[39] |
Fano U 1961 Phys. Rev. 124 1866
|
[40] |
Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
|
[41] |
Hobvtić B and Zlatić V 1980 Phys. Status. Solidi. B 99 251
|
[42] |
Feynman R P and Vernon, Jr. F L 1963 Ann. Phys. 24 118
|
[43] |
Kleinert H 2009 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. (Singapore: World Scientific) pp. 654-663
|
[44] |
Xu R X, Cui P, Li X Q, Mo Y and Yan Y J 2005 J. Chem. Phys. 122 041103
|
[45] |
Xu R X and Yan Y J 2007 Phys. Rev. E 75 031107
|
[46] |
Zheng X, Jin J S, Welack S, Luo M and Yan Y J 2009 J. Chem. Phys. 130 164708
|
[47] |
Zheng X, Xu R X, Xu J, Jin J S, Hu J and Yan Y J 2012 Prog. Chem. 24 1129
|
[48] |
Yan Y J 2014 J. Chem. Phys. 140 054105
|
[49] |
Yan Y J, Jin J S, Xu R X and Zheng X 2016 Frontiers Phys. 11 110306
|
[50] |
Zheng X, Yan Y J, Di Ventra M 2013 Phys. Rev. Lett. 111 086601
|
[51] |
Han L, Zhang H D, Zheng X and Yan Y J 2018 J. Phys. Chem. 148 234108
|
[52] |
Hu J, Xu R X and Yan Y J 2010 J. Chem. Phys. 133 101106
|
[53] |
Hu J, Luo M, Jiang F, Xu R X and Yan Y J 2011 J. Chem. Phys. 134 244106
|
[54] |
Cheng Y X, Hou W J, Wang Y D, Li Z H, Wei J H and Yan Y J 2015 New J. Phys. 17 033009
|
[55] |
Pan L, Wang Y D, Li Z H, Wei J H and Yan Y J 2017 J. Phys.: Condens. Matter 29 025601
|
[56] |
Ye L Z, Hou D, Wang R L, Cao D W, Zheng X and Yan Y J 2014 Phys. Rev. B 90 165116
|
[57] |
Cheng Y X, Wei J H and Yan Y J 2015 EPL 112 57001
|
[58] |
Cheng Y X, Wang Y D, Wei J H, Luo H G and Lin H Q 2019 J. Phys.: Condens. Matter 31 155302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|