Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067204    DOI: 10.1088/1674-1056/ab8ac1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots

Fu-Li Sun(孙复莉)1, Yuan-Dong Wang(王援东)1, Jian-Hua Wei(魏建华)1, Yi-Jing Yan(严以京)2
1 Department of Physics & Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We report capacitive coupling induced Kondo-Fano (K-F) interference in a double quantum dot (DQD) by systematically investigating its low-temperature properties on the basis of hierarchical equations of motion evaluations. We show that the interdot capacitive coupling U12 splits the singly-occupied (S-O) state in quantum dot 1 (QD1) into three quasi-particle substates: the unshifted S-O0 substate, and elevated S-O1 and S-O2. As U12 increases, S-O2 and S-O1 successively cross through the Kondo resonance state at the Fermi level (ω=0), resulting in the so-called Kondo-I (KI), K-F, and Kondo-II (KII) regimes. While both the KI and KII regimes have the conventional Kondo resonance properties, remarkable Kondo-Fano interference features are shown in the K-F regime. In the view of scattering, we propose that the phase shift η(ω) is suitable for analysis of the Kondo-Fano interference. We present a general approach for calculating η(ω) and applying it to the DQD in the K-F regime where the two maxima of η(ω=0) characterize the interferences between the Kondo resonance state and S-O2 and S-O1 substates, respectively.
Keywords:  Kondo effect      Fano effect      quantum dot      capacitive coupling  
Received:  21 February 2020      Revised:  17 April 2020      Accepted manuscript online: 
PACS:  72.15.Qm (Scattering mechanisms and Kondo effect)  
  73.63.Kv (Quantum dots)  
  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774418, 11374363, and 21373191).
Corresponding Authors:  Jian-Hua Wei     E-mail:  wjh@ruc.edu.cn

Cite this article: 

Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京) Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots 2020 Chin. Phys. B 29 067204

[1] Kondo J 1964 Prog. Theor. Phys. 32 37
[2] Costi T A, Hewson A C and Zlatić 1994 J. Phys.: Condens. Matter 6 2519
[3] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) pp. 47-65
[4] Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett. 109 266403
[5] Li J, Schneider W D, Berndt R and Delley B 1998 Phys. Rev. Lett. 80 2893
[6] Göres J, Goldhaber-Gordon D, Heemeyer S, Kastner M A, Shtrikman H, Mahalu D and Meirav U 2000 Phys. Rev. B 62 2188
[7] Zacharia I G, Goldhaber-Gordon D, Granger G, Kastner M A, Khavin Y B, Shtrikman H, Mahalu D and Meirav U 2001 Phys. Rev. B 64 155311
[8] Sasaki S, Tamura H, Akazaki T and Fujisawa T 2009 Phys. Rev. Lett. 103 266806
[9] Žitko R 2010 Phys. Rev. B 81 115316
[10] Oreg Y and Goldhaber-Gordon D 2003 Phys. Rev. Lett. 90 136602
[11] Lebanon E, Schiller A and Anders F B 2003 Phys. Rev. B 68 155301
[12] Cornaglia P S and Grempel D R 2005 Phys. Rev. B 71 075305
[13] Žitko R and Bonča J 2006 Phys. Rev. B 73 035332
[14] Žitko R and Bonča J 2007 J. Phys.: Condens. Matter 19 255205
[15] Chung C H, Zarand G and Wölfle P 2008 Phys. Rev. B 77 035120
[16] Chung C H and Lee T H 2010 Phys. Rev. B 82 085325
[17] Tanaka Y, Kawakami N and Oguri A 2012 Phys. Rev. B 85 155314
[18] Andrade J A, Cornaglia P S and Aligia A A 2014 Phys. Rev. B 89 115110
[19] Chan I H, Westervelt R M, Maranowski K D and Gossard A C 2002 Appl. Phys. Lett. 80 1818
[20] Chan I H, Fallahi P, Westervelt R M, Maranowski K D and Gossard A C 2003 Physica E 17 584
[21] Holleitner A W, Blick R H and Eberl K 2003 Appl. Phys. Lett. 82 1887
[22] McClure D T, DiCarlo L, Zhang Y, Engel H A, Marcus C M, Hanson M P and Gossard A C 2007 Phys. Rev. Lett. 98 056801
[23] Hübel A, Weis J, Dietsche W and Klitzing K v 2007 Appl. Phys. Lett. 91 102101
[24] Hübel A, Held K, Weis J and Klitzing K v 2008 Phys. Rev. Lett. 101 186804
[25] Okazaki Y, Sasaki S and Muraki K 2011 Phys. Rev. B 84 161305
[26] López R, Aguado R and Platero G 2002 Phys. Rev. Lett. 89 136802
[27] Mravlje J, Ramsak A and Rejec T 2006 Phys. Rev. B. 73 241305
[28] Lipinski S and Krychowski D 2007 J. Magn. Magn. Mater. 310 2423
[29] Hatano T, Amaha S, Kubo T, Teraoka S, Tokura Y, Gupta J A, Austing D G and Tarucha S 2010 Appl. Phys. Lett. 97 062108
[30] Ruiz-Tijerina D A, Vernek E and Ulloa S E 2014 Phys. Rev. B 90 035119
[31] Galpin M R, Logan D E and Krishnamurthy H R 2005 Phys. Rev. Lett. 94186406
[32] Krychowski D, Florkow P, Antkiewicz M and Lipinski S 2018 Phys. E 98 74
[33] Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys. 128 234703
[34] Camacho G, Schmitteckert P and Carr S T 2019 Phys. Rev. B 99 085122
[35] Luo H G, Xiang T, Wang X Q, Su Z B and Yu L 2004 Phys. Rev. Lett. 92 256602
[36] Luo H G, Xiang T, Wang X Q, Su Z B and Yu L 2006 Phys. Rev. Lett. 96 019702
[37] Wei J H and Yan Y J 2011 arXiv:1108.5955
[38] Li Z H, Cheng Y X, Wei J H, Zheng X and Yan Y J 2018 Phys. Rev. B 98 115133
[39] Fano U 1961 Phys. Rev. 124 1866
[40] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[41] Hobvtić B and Zlatić V 1980 Phys. Status. Solidi. B 99 251
[42] Feynman R P and Vernon, Jr. F L 1963 Ann. Phys. 24 118
[43] Kleinert H 2009 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. (Singapore: World Scientific) pp. 654-663
[44] Xu R X, Cui P, Li X Q, Mo Y and Yan Y J 2005 J. Chem. Phys. 122 041103
[45] Xu R X and Yan Y J 2007 Phys. Rev. E 75 031107
[46] Zheng X, Jin J S, Welack S, Luo M and Yan Y J 2009 J. Chem. Phys. 130 164708
[47] Zheng X, Xu R X, Xu J, Jin J S, Hu J and Yan Y J 2012 Prog. Chem. 24 1129
[48] Yan Y J 2014 J. Chem. Phys. 140 054105
[49] Yan Y J, Jin J S, Xu R X and Zheng X 2016 Frontiers Phys. 11 110306
[50] Zheng X, Yan Y J, Di Ventra M 2013 Phys. Rev. Lett. 111 086601
[51] Han L, Zhang H D, Zheng X and Yan Y J 2018 J. Phys. Chem. 148 234108
[52] Hu J, Xu R X and Yan Y J 2010 J. Chem. Phys. 133 101106
[53] Hu J, Luo M, Jiang F, Xu R X and Yan Y J 2011 J. Chem. Phys. 134 244106
[54] Cheng Y X, Hou W J, Wang Y D, Li Z H, Wei J H and Yan Y J 2015 New J. Phys. 17 033009
[55] Pan L, Wang Y D, Li Z H, Wei J H and Yan Y J 2017 J. Phys.: Condens. Matter 29 025601
[56] Ye L Z, Hou D, Wang R L, Cao D W, Zheng X and Yan Y J 2014 Phys. Rev. B 90 165116
[57] Cheng Y X, Wei J H and Yan Y J 2015 EPL 112 57001
[58] Cheng Y X, Wang Y D, Wei J H, Luo H G and Lin H Q 2019 J. Phys.: Condens. Matter 31 155302
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[14] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!