Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 116301    DOI: 10.1088/1674-1056/ab4bb8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study

Irfan Ahmed1, Muhammad Rafique1,2, Mukhtiar Ahmed Mahar3, Abdul Sattar Larik3, Mohsin Ali Tunio1, Yong Shuai(帅永)2
1 Mehran University of Engineering and Technology, SZAB, Campus, Khairpur Mirs', Pakistan;
2 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
3 Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan
Abstract  The band structure, magnetism, charge distribution, and optics parameters of TMO3-h-BN hybrid systems are investigated by adopting first-principles study (FPS) calculations. It is observed that the TMO3 clusters add finite magnetic moments to bilayer h-BN (BL/h-BN), thereby making it a magnetic two-dimensional (2D) material. Spin-polarized band structures for various TMO3-BL/h-BN hybrid models are calculated. After the incorporation of TMO3, BL/h-BN is converted into semimetal or conducting material in spin up/down bands, depending on the type of impurity cluster present in BL/h-BN lattice. Optics parameters are also investigated for the TMO3-BL/h-BN complex systems. The incorporation of TMO3 clusters modifies the absorption and extinction coefficient in visible range, while static reflectivity and refraction parameter increase. It can be surmised that the TMO3 substitution in BL/h-BN is a suitable technique to modify its physical parameters thus making it functional for nano/opto-electronic applications, and an experimental approach can be adapted to reinforce the outcomes of this study.
Keywords:  bilayer h-BN      band structure      density of states      magnetic moments      optics  
Received:  30 July 2019      Revised:  15 September 2019      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.Pr (Electronic structure of graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51876049) and the Fund from the Higher Education Commission, Pakistan under SRGP (Grant No. 21-1778/SRGP/R&D/HEC/2017).
Corresponding Authors:  Muhammad Rafique, Yong Shuai     E-mail:  rafique@hit.edu.cn;shuaiyong@hit.edu.cn

Cite this article: 

Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永) Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study 2019 Chin. Phys. B 28 116301

[35] Muhammad R, Uqaili M A, Shuai Y, Mahar M A and Ahmed I 2018 Appl. Surf. Sci.
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[36] Grimme S 2006 J. Comput. Chem. 27 1787
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[2] Phani A R 1994 Bull. Mater. Sci. 17 219
[38] Peyghan A A, Noei M and Yourdkhani S 2013 Superlattices Microstruct. 59 115
[3] Ataca C, Sahin H, Akturk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[4] Sun L, Li Y, Li Z, Li Q, Zhou Z, Chen Z, Yang J and Hou J 2008 J. Chem. Phys. 129 174114
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[5] Wan Q, Xiong Z, Dai J, Rao J and Jiang F 2008 Opt. Mater. 30 817
[6] Zhan D, Sun L, Ni Z H, Liu L, Fan X F, Wang Y, Yu T, Lam Y M, Huang W and Shen Z X 2010 Adv. Funct. Mater. 20 3504
[41] Wang G, Rahman A K F and Wang B 2018 J. Mol. Model. 24 116
[7] Lebedev A V, Lebedeva I V, Knizhnik A A and Popov A M 2016 RSC Adv. 6 6423
[42] Muhammad R, Shuai Y and Tan H P 2017 J. Mater. Chem. C 5 8112
[8] Falin A, Cai Q, Santos E J, Scullion D, Qian D, Zhang R, Yang Z, Huang S, Watanabe K and Taniguchi T 2017 Nat. Commun. 8 15815
[43] Rafique M, Shuai Y, Tan H P and Hassan M 2017 RSC Adv. 7 16360
[9] Lebedeva I V, Lebedev A V, Popov A M and Knizhnik A A 2016 Phys. Rev. B 93 235414
[44] Kresse G and Hafner J 1994 J. Phys.:Condens. Matter 6 8245
[10] Solozhenko V, Lazarenko A, Petitet J P and Kanaev A 2001 J. Phys. Chem. Solids 62 1331
[45] Grimme S, Mück-Lichtenfeld C and Antony J 2007 J. Phys. Chem. C 111 11199
[11] Nemanich R, Solin S and Martin R M 1981 Phys. Rev. B 23 6348
[46] Antony J and Grimme S 2008 Phys. Chem. Chem. Phys. 10 2722
[12] Albe K 1997 Phys. Rev. B 55 6203
[47] Kharche N and Nayak S K 2011 Nano Lett. 11 5274
[13] Kern G, Kresse G and Hafner J 1999 Phys. Rev. B 59 8551
[48] Meng J, Li D, Niu Y, Zhao H, Liang C and He Z 2016 Phys. Lett. A 380 2300
[14] Constantinescu G, Kuc A and Heine T 2013 Phys. Rev. Lett. 111 036104
[49] Li D, Wang C, Niu Y, Zhao H and Liang C 2014 Chem. Phys. Lett. 601 16
[15] Hsing C R, Cheng C, Chou J P, Chang C M and Wei C M 2014 New J. Phys. 16 113015
[50] Rafique M, Uqaili M A, Mirjat N H, Tunio M A and Shuai Y 2019 Physica E:Low-dimensional Systems and Nanostructures
[16] Rong Z Y and Kuiper P 1993 Phys. Rev. B 48 17427
[51] Rafique M, Shuai Y, Ahmed I, Shaikh R and Tunio M A 2019 Appl. Surf. Sci.
[17] Gan Y, Chu W and Qiao L 2003 Surf. Sci. 539 120
[52] El-Barbary A, Telling R, Ewels C, Heggie M and Briddon P 2003 Phys. Rev. B 68 144107
[18] Brown L, Hovden R, Huang P, Wojcik M, Muller D A and Park J 2012 Nano Lett. 12 1609
[53] Rodríguez-Manzo J A, Cretu O and Banhart F 2010 ACS Nano 4 3422
[19] San-Jose P, Gorbachev R, Geim A, Novoselov K and Guinea F 2014 Nano Lett. 14 2052
[54] Banhart F, Kotakoski J and Krasheninnikov A V 2010 ACS Nano 5 26
[20] Alden J S, Tsen A W, Huang P Y, Hovden R, Brown L, Park J, Muller D A and McEuen P L 2013 Proc. Nat. Acad. Sci. 110 11256
[55] Tang W, Sanville E and Henkelman G 2009 J. Phys.:Condens. Matter 21 084204
[21] Kim N, Kim K S, Jung N, Brus L and Kim P 2011 Nano Lett. 11 860
[56] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[22] Dresselhaus M and Dresselhaus G 1981 Adv. Phys. 30 139
[57] Guillaume S O, Zheng B, Charlier J C and Henrard L 2012 Phys. Rev. B 85 035444
[23] Ohhashi K and Tsujikawa I 1974 J. Phys. Soc. Jpn. 36 422
[58] Ullah S, Hussain A, Syed W, Saqlain M A, Ahmad I, Leenaerts O and Karim A 2015 RSC Adv. 5 55762
[24] Kaneko T and Saito R 2017 Surf. Sci. 665 1
[59] Rafique M, Mirjat N H, Soomro A M, Khokhar S and Shuai Y 2018 Phys. Lett. A 382 1108
[25] Han J, Kang D and Dai J 2018 RSC Adv. 8 19732
[60] Fujimoto Y 2015 Adv. Condens. Matter Phys. 2015
[26] Wang J, Ma F, Liang W and Sun M 2017 Mater. Today Phys. 2 6
[61] Lin J, Fang W, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J and Pantelides S T 2013 Nano Lett. 13 3262
[27] Wang J, Xu X, Mu X, Ma F and Sun M 2017 Mater. Today Phys. 3 93
[62] ChakarovaKäck S D, Schröder E, Lundqvist B I and Langreth D C 2006 Phys. Rev. Lett. 96 146107
[28] Wang J, Mu X, Wang X, Wang N, Ma F, Liang W and Sun M 2018 Mater. Today Phys. 5 29
[63] Zhong X, Yap Y K, Pandey R and Karna S P 2011 Phys. Rev. B 83 193403
[29] Wang J, Ma F and Sun M 2017 RSC Adv. 7 16801
[64] Muhammad R, Shuai Y, Irfan A and He-Ping T 2018 RSC Adv. 8 23688
[30] Vagdevi K, Radhika Devi V and Venkateswara Rao K 2017 Mater. Today:Proc. 4 7586
[65] Fan Y, Zhao M, Wang Z, Zhang X and Zhang H 2011 Appl. Phys. Lett. 98 083103
[31] Zhang X, Li D, Meng J, Yan R, Niu Y, Zhao H, Liang C and He Z 2016 Comput. Mater. Sci. 124 316
[66] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[32] Yu W J, Liao L, Chae S H, Lee Y H and Duan X 2011 Nano Lett. 11 4759
[67] Rafique M, Uqaili M A, Mirjat N H, Ahmad K and Shuai Y 2019 Phys. E:Low-dimensional Syst. Nanostruct. 110 24
[33] Rafique M, Shuai Y, Tan H P and Muhammad H 2017 Appl. Surf. Sci. 408 21
[68] Rafique M, Shuai Y and Hussain N 2018 Phys. E:Low-dimensional Syst. Nanostruct. 95 94
[34] Rafique M, Shuai Y, Tan H P and Muhammad H Appl. Surf. Sci.
[69] Marinopoulos A, Reining L, Rubio A and Olevano V 2004 Phys. Rev. B 69 245419
[35] Muhammad R, Uqaili M A, Shuai Y, Mahar M A and Ahmed I 2018 Appl. Surf. Sci.
[70] Muhammad R, Shuai Y and Tan H P 2017 Phys. E:Low-dimensional Syst. Nanostruct. 88 115
[36] Grimme S 2006 J. Comput. Chem. 27 1787
[71] Gusynin V, Sharapov S and Carbotte J 2006 Phys. Rev. Lett. 96 256802
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[72] Peres N, Guinea F and Neto A C 2006 Phys. Rev. B 73 125411
[38] Peyghan A A, Noei M and Yourdkhani S 2013 Superlattices Microstruct. 59 115
[73] Rafique M, Unar M A, Ahmed I, Chachar A R and Shuai Y 2018 J. Phys. Chem. Solids 118 114
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[74] Laturia A, Van de Put M L and Vandenberghe W G 2018 npj 2D Mater. Appl. 2 6
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[75] Wang J, Ma F, Liang W, Wang R and Sun M 2017 Nanophotonics 6 943
[41] Wang G, Rahman A K F and Wang B 2018 J. Mol. Model. 24 116
[76] Golla D, Chattrakun K, Watanabe K, Taniguchi T, LeRoy B J and Sandhu A 2013 Appl. Phys. Lett. 102 161906
[42] Muhammad R, Shuai Y and Tan H P 2017 J. Mater. Chem. C 5 8112
[43] Rafique M, Shuai Y, Tan H P and Hassan M 2017 RSC Adv. 7 16360
[44] Kresse G and Hafner J 1994 J. Phys.:Condens. Matter 6 8245
[45] Grimme S, Mück-Lichtenfeld C and Antony J 2007 J. Phys. Chem. C 111 11199
[46] Antony J and Grimme S 2008 Phys. Chem. Chem. Phys. 10 2722
[47] Kharche N and Nayak S K 2011 Nano Lett. 11 5274
[48] Meng J, Li D, Niu Y, Zhao H, Liang C and He Z 2016 Phys. Lett. A 380 2300
[49] Li D, Wang C, Niu Y, Zhao H and Liang C 2014 Chem. Phys. Lett. 601 16
[50] Rafique M, Uqaili M A, Mirjat N H, Tunio M A and Shuai Y 2019 Physica E:Low-dimensional Systems and Nanostructures
[51] Rafique M, Shuai Y, Ahmed I, Shaikh R and Tunio M A 2019 Appl. Surf. Sci.
[52] El-Barbary A, Telling R, Ewels C, Heggie M and Briddon P 2003 Phys. Rev. B 68 144107
[53] Rodríguez-Manzo J A, Cretu O and Banhart F 2010 ACS Nano 4 3422
[54] Banhart F, Kotakoski J and Krasheninnikov A V 2010 ACS Nano 5 26
[55] Tang W, Sanville E and Henkelman G 2009 J. Phys.:Condens. Matter 21 084204
[56] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[57] Guillaume S O, Zheng B, Charlier J C and Henrard L 2012 Phys. Rev. B 85 035444
[58] Ullah S, Hussain A, Syed W, Saqlain M A, Ahmad I, Leenaerts O and Karim A 2015 RSC Adv. 5 55762
[59] Rafique M, Mirjat N H, Soomro A M, Khokhar S and Shuai Y 2018 Phys. Lett. A 382 1108
[60] Fujimoto Y 2015 Adv. Condens. Matter Phys. 2015
[61] Lin J, Fang W, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J and Pantelides S T 2013 Nano Lett. 13 3262
[62] ChakarovaKäck S D, Schröder E, Lundqvist B I and Langreth D C 2006 Phys. Rev. Lett. 96 146107
[63] Zhong X, Yap Y K, Pandey R and Karna S P 2011 Phys. Rev. B 83 193403
[64] Muhammad R, Shuai Y, Irfan A and He-Ping T 2018 RSC Adv. 8 23688
[65] Fan Y, Zhao M, Wang Z, Zhang X and Zhang H 2011 Appl. Phys. Lett. 98 083103
[66] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[67] Rafique M, Uqaili M A, Mirjat N H, Ahmad K and Shuai Y 2019 Phys. E:Low-dimensional Syst. Nanostruct. 110 24
[68] Rafique M, Shuai Y and Hussain N 2018 Phys. E:Low-dimensional Syst. Nanostruct. 95 94
[69] Marinopoulos A, Reining L, Rubio A and Olevano V 2004 Phys. Rev. B 69 245419
[70] Muhammad R, Shuai Y and Tan H P 2017 Phys. E:Low-dimensional Syst. Nanostruct. 88 115
[71] Gusynin V, Sharapov S and Carbotte J 2006 Phys. Rev. Lett. 96 256802
[72] Peres N, Guinea F and Neto A C 2006 Phys. Rev. B 73 125411
[73] Rafique M, Unar M A, Ahmed I, Chachar A R and Shuai Y 2018 J. Phys. Chem. Solids 118 114
[74] Laturia A, Van de Put M L and Vandenberghe W G 2018 npj 2D Mater. Appl. 2 6
[75] Wang J, Ma F, Liang W, Wang R and Sun M 2017 Nanophotonics 6 943
[76] Golla D, Chattrakun K, Watanabe K, Taniguchi T, LeRoy B J and Sandhu A 2013 Appl. Phys. Lett. 102 161906
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[4] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[5] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[8] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[9] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[10] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[11] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[12] X-ray focusing using an x-ray lens composed of multi-square polycapillary slices
Kai Pan(潘凯), Tian-Cheng Yi(易天成), Zhao Wang(王瞾), Mo Zhou(周末), Yu-De Li(李玉德), Zhi-Guo Liu(刘志国), Xiao-Yan Lin(林晓燕), and Tian-Xi Sun(孙天希). Chin. Phys. B, 2022, 31(2): 020701.
[13] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[14] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[15] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
No Suggested Reading articles found!