Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 067102    DOI: 10.1088/1674-1056/19/6/067102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Two-dimensional analysis of the interface states effects on current gain for 4H-SiC bipolar junction transistor

Zhang You-Run(张有润), Zhang Bo(张波), Li Zhao-Ji(李肇基), and Deng Xiao-Chuan(邓小川)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  This paper studies two-dimensional analysis of the surface state effect on current gain for a 4H--SiC bipolar junction transistor (BJT). Simulation results indicate the mechanism of current gain degradation, which is surface Fermi level pinning leading to a strong downward bending of the energy bands to form the channel of surface electron recombination current. The experimental results are well-matched with the simulation, which is modeled by exponential distributions of the interface state density replacing the single interface state trap. Furthermore, the simulation reveals that the oxide quality of the base emitter junction interface is very important for 4H--SiC BJT performance.
Keywords:  4H--SiC      bipolar junction transistor      current gain      interface state trap  
Received:  18 September 2009      Accepted manuscript online: 
PACS:  85.30.Pq (Bipolar transistors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.25.+i (Surface conductivity and carrier phenomena)  

Cite this article: 

Zhang You-Run(张有润), Zhang Bo(张波), Li Zhao-Ji(李肇基), and Deng Xiao-Chuan(邓小川) Two-dimensional analysis of the interface states effects on current gain for 4H-SiC bipolar junction transistor 2010 Chin. Phys. B 19 067102

[1] Krishnaswami S, Agarwal A, Ryu S H, Capell C, Richmond J, Palmour J, Balachandran S, Chow T P, Bayne S, Geil B, Jones K and Scozzie C 2005 Electron Device Lett . 26 175
[2] Balachandran S, Chow T P, Agarwal A, Scozzie C and Jones K A 2005 Electron Device Lett . 26 470
[3] Ivanov P A, Levinshtein M E, Agarwal A K, Krishnaswami S and Palmour J W 2006 Electron Devices 53 1245
[4] Zhang J H, Li X Q, Alexandrov P, Fursin L, Wang X H and Zhao J H 2008 Electron Devices 55 1899
[5] Gao Y, Huang A Q, Zhang Q C, Krishnaswami S and Agarwal A K 2007 Proc. 19th Int. Symp. Power Semiconductor Devices Ics {121
[6] Knaup J M, Frauenheim P D T, Gali A, Hajnal Z and Choyke W J 2005 Phys. Rev . B 72 115323
[7] Soares G V, Baumvol I J R, Hold L, Kong F, Dimitrijev J H S, Radtke C and Stedile F C 2007 Appl. Phys. Lett . 91 041906
[8] Powell S K, Goldsman N, McGarrity J M, Bernstein J, Scozzie C J and Lelis A 2002 J. Appl. Phys . 92 4053
[9] Potbhare S, Goldsman N, Lelis A, McGarrity J M, McLean F B and Habersat D 2008 Electron Devices 55 2029
[10] Zhang Y R, Zhang B, Li Z J, Deng X C and Liu X L 2009 Chin. Phys. B 18 3995
[11] Deng X C, Feng Z, Zhang B, Li Z J, Li L and Pan H S 2009 Chin. Phys. B 18 3018
[12] Lindefelt U 1998 J. Appl. Phys. 84 2628
[13] Device Simulator Atlas 2008 Atlas User's Manual Silvaco International
[14] Kordina O and Bergman J P 1996 Appl. Phys. Lett. 69 679
[15] Ruff M, Mitlehner H and Helbig R 1994 Electron Devices 41 1040
[16] Capano M A, Santhakumar R, Venugopal R, Melloch M R and Cooper J A 2000 J. Electr. Mater. 29 210
[17] Vathulya V R and White M H 2000 Electron Devices 47 2018
[18] Saks N S, Mani S S and Agarwal A K 2000 Appl. Phys. Lett. 76 2250
[19] Yano H, Katafuchi F and Matsunami H 1999 Electron Devices 46 504
[20] Constand A, Camara N, Godignon P and Camassel J 2009 Appl. Phys. Lett. 94 063508
[21] Tao N G M, Liu H G and Bolognesi C R 2005 Electron Devices 52 1061
[22] Tiwari S and David J F 1989 Electron Devices 36 2105
[1] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[2] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[3] Bulk and surface damages in complementary bipolar junction transistors produced by high dose irradiation
J Assaf. Chin. Phys. B, 2018, 27(1): 016103.
[4] Experimental and simulation studies of single-event transient in partially depleted SOI MOSFET
Wei-Wei Yan(闫薇薇), Lin-Chun Gao(高林春), Xiao-Jing Li(李晓静), Fa-Zhan Zhao(赵发展), Chuan-Bin Zeng(曾传滨), Jia-Jun Luo(罗家俊), Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2017, 26(9): 098505.
[5] Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates
Qi-Feng Zhao(赵启凤), Yi-Qi Zhuang(庄奕琪), Jun-Lin Bao(包军林), Wei Hu(胡为). Chin. Phys. B, 2016, 25(4): 046104.
[6] Physical modeling of direct current and radio frequency characteristics for InP-based InAlAs/InGaAs HEMTs
Shu-Xiang Sun(孙树祥), Hui-Fang Ji(吉慧芳), Hui-Juan Yao(姚会娟), Sheng Li(李胜), Zhi Jin(金智), Peng Ding(丁芃), Ying-Hui Zhong(钟英辉). Chin. Phys. B, 2016, 25(10): 108501.
[7] A novel 4H-SiC lateral bipolar junction transistor structure with high voltage and high current gain
Deng Yong-Hui (邓永辉), Xie Gang (谢刚), Wang Tao (汪涛), Sheng Kuang (盛况). Chin. Phys. B, 2013, 22(9): 097201.
[8] Fabrication and characterization of 4H–SiC bipolar junction transistor with double base epilayer
Zhang Qian (张倩), Zhang Yu-Ming (张玉明), Yuan Lei (元磊), Zhang Yi-Men (张义门), Tang Xiao-Yan (汤晓燕), Song Qing-Wen (宋庆文 ). Chin. Phys. B, 2012, 21(8): 088502.
[9] Influence of geometrical parameters on the behaviour of SiC merged PiN Schottky rectifiers with junction termination extension
Song Qing-Wen(宋庆文), Zhang Yu-Ming(张玉明), Zhang Yi-Men(张义门), Zhang Qian(张倩), Guo Hui(郭辉), Li Zhi-Yun(李志云), and Wang Zhong-Xu(王中旭). Chin. Phys. B, 2010, 19(4): 047201.
[10] Simulation research on offset field-plate used as edge termination in 4H-SiC merged PiN-Schottky diodes
Chen Feng-Ping(陈丰平), Zhang Yu-Ming(张玉明), Zhang Yi-Men(张义门), LÜ Hong-Liang(吕红亮), and Song Qing-Wen(宋庆文). Chin. Phys. B, 2010, 19(4): 047305.
[11] Device research on GaAs-based InAlAs/InGaAs metamorphic high electron mobility transistors grown by metal organic chemical vapour deposition
Xu Jing-Bo(徐静波), Zhang Hai-Ying(张海英), Fu Xiao-Jun(付晓君), Guo Tian-Yi(郭天义), and Huang Jie(黄杰). Chin. Phys. B, 2010, 19(3): 037302.
[12] A novel structure of a high current gain 4H-SiC BJT with a buried layer in base
Zhang You-Run(张有润), Zhang Bo(张波), Li Zhao-Ji(李肇基), Deng Xiao-Chuan(邓小川), and Liu Xi-Ling(刘曦麟). Chin. Phys. B, 2009, 18(9): 3995-3999.
[13] Thermal analytic model of current gain for bipolar junction transistor-bipolar static induction transistor compound device
Zhang You-Run(张有润), Zhang Bo(张波), Li Ze-Hong(李泽宏), Lai Chang-Jin(赖昌菁), and Li Zhao-Ji(李肇基). Chin. Phys. B, 2009, 18(2): 763-767.
[14] Analytical model for reverse characteristics of 4H--SiC merged PN--Schottky (MPS) diodes
Song Qing-Wen(宋庆文),Zhang Yu-Ming(张玉明),Zhang Yi-Men(张义门), ü Hong-Liang(吕红亮),Chen Feng-Ping(陈丰平), and Zheng Qing-Li(郑庆立) . Chin. Phys. B, 2009, 18(12): 5474-5478.
[15] Physical simulations and experimental results of 4H—SiC MESFETs on high purity semi-insulating substrates
Chen Gang(陈刚), Bai Song(柏松), Li Zhe-Yang(李哲洋), Wu Peng(吴鹏), Chen Zheng(陈征), and Han Pin(韩平). Chin. Phys. B, 2009, 18(10): 4474-4478.
No Suggested Reading articles found!