Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 016103    DOI: 10.1088/1674-1056/27/1/016103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Bulk and surface damages in complementary bipolar junction transistors produced by high dose irradiation

J Assaf
Atomic Energy Commission, Damascus, Syria
Abstract  

Two complementary types NPN and PNP of bipolar junction transistors (BJTs) were exposed to high dose of neutrons and gamma rays. The change in the base and collector currents, minority carriers lifetime, and current gain factor β with respect to the dose were analyzed. The contributions of the base current according to the defect types were also reported. It was declared that the radiation effect of neutrons was almost similar between the two transistor types, this effect at high dose may decrease the value of β to less than one. The Messenger-Spratt equation was used to describe the experimental results in this case. However, the experimental data demonstrated that the effect of gamma rays was generally higher on NPN than PNP transistors. This is mainly attributed to the difference in the behavior of the trapped positive charges in the SiO2 layers. Meanwhile, this difference tends to be small for high gamma dose.

Keywords:  bipolar junction transistors      radiation effects      surface damage      bulk damage  
Received:  09 August 2017      Revised:  26 September 2017      Accepted manuscript online: 
PACS:  61.80.Hg (Neutron radiation effects)  
  61.80.Ed (γ-ray effects)  
  61.82.Fk (Semiconductors)  
  81.40.Wx (Radiation treatment)  
Corresponding Authors:  J Assaf     E-mail:  pscientific12@aec.org.sy

Cite this article: 

J Assaf Bulk and surface damages in complementary bipolar junction transistors produced by high dose irradiation 2018 Chin. Phys. B 27 016103

[1] Lee T H and Kim H D 2007 Nucl. Instr. Metal A 579 260
[2] Schmidt D M, Fleetwood D M, Schrimpf R D, Pease R L, Graves R J, Johnston G H, Galloway K F and Combs W E 1995 IEEE Trans. Nucl. Sci. 42 1541
[3] Schrimpf R D 2004 Int. J. High Speed Electron. Syst. 14 503
[4] Liu C M, Li X J, Geng H B, Rui E, Guo X and Yang J Q 2011 Chin. Phys. B 21 080703
[5] Kulkami S R and Damle R 2011 Indian J. Phys. 85 391
[6] Assaf J, Shwiekani R and Ghazi N 2014 Radiat. Phys. Chem. 103 142
[7] Johnston A H, Swift G M and Rax G 1994 IEEE Trans. Nucl. Sci. 41 2427
[8] Li X J, Geng H B, Lan M J, Yang D Z, He S Y and Liu C M 2010 Chin. Phys. B 19 066103
[9] Lenahan P M and Dressendorfer P V 1984 J. Appl. Phys. 55 3495
[10] Feigl F J, Fowler W B and Yip K L 1974 Solid State Commun. 14 225
[11] Chen X J, Barnaby H J, Schrimpf R D, Fleetwood D M, Pease R L, Platteter D G and Dunham G W 2006 IEEE Trans. Nucl. Sci. 53 3649
[12] Chris G R, van de Wall and Street R A 1994 Phys. Rev. B 49 14766
[13] Campbell P M and Wix S D 2013 Sadia Report SAND2013-3769
[14] Wertheim G K 1957 Phys. Rev. 105 1730
[15] Sze S M 1981 Physics of Semiconductors Device (2nd Edn.) (NY: Wiley)
[16] Messnger G C 1992 IEEE Trans. Nucl. Sci. 39 468
[17] Vukic V and Osmokrovic P 2006 J. Optoelectron. Dev. Mater. 8 1538
[18] Messenger G C and Spratt J P 1958 Proc. IRE 46 1038
[19] Li X, Geng H, Liu C, Zhao Z, Lan M, Yang D and He S 2009 Nucl. Instr. Meth. A 612 171
[20] Ma T P and Dressendorfer P V 1989 Ionizing Radiation Effects in MOS Devices & Circuits, I (Wiley & Sons)
[21] Schrimpf R D 1996 IEEE Trans. Nucl. Sci. 43 787
[22] Kosier S L, Wei A, Schrimpf R D, Fleetwood D M, DeLaus M, Pease R L and Combs W E 1995 IEEE Trans. Nucl. Sci. 42 436
[23] Pushpa N, Praveen K C, Gnana P A, Gupta S K and Revannasiddaiaha D 2013 Curr. Appl. Phys. 13 66
[24] Liu C M, Li X J, Geng H B, Yang D Z and He S Y 2012 Chin. Phys. B 21 080703
[1] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[2] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[3] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[4] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[5] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[6] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[7] Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics
Xiang He(何祥), Heng Zhao(赵恒), Gang Wang(王刚), Peifan Zhou(周佩璠), Ping Ma(马平). Chin. Phys. B, 2016, 25(8): 088105.
[8] Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates
Qi-Feng Zhao(赵启凤), Yi-Qi Zhuang(庄奕琪), Jun-Lin Bao(包军林), Wei Hu(胡为). Chin. Phys. B, 2016, 25(4): 046104.
[9] Fabrication and characterization of 4H–SiC bipolar junction transistor with double base epilayer
Zhang Qian (张倩), Zhang Yu-Ming (张玉明), Yuan Lei (元磊), Zhang Yi-Men (张义门), Tang Xiao-Yan (汤晓燕), Song Qing-Wen (宋庆文 ). Chin. Phys. B, 2012, 21(8): 088502.
[10] Effect of bias condition on heavy ion radiation in bipolar junction transistor
Liu Chao-Ming (刘超铭), Li Xing-Ji (李兴冀), Geng Hong-Bin (耿洪滨), Yang De-Zhuang (杨德庄), He Shi-Yu (何世禹 ). Chin. Phys. B, 2012, 21(8): 080703.
[11] Incident particle range dependence of radiation damage in a power bipolar junction transistor
Liu Chao-Ming (刘超铭), Li Xing-Ji (李兴冀), Geng Hong-Bin (耿洪滨), Rui Er-Ming (芮二明), Guo Li-Xin (郭立新), Yang Jian-Qun (杨剑群). Chin. Phys. B, 2012, 21(10): 104211.
[12] Degradation mechanisms of current gain in NPN transistors
Li Xing-Ji(李兴冀), Geng Hong-Bin(耿洪滨), Lan Mu-Jie(兰慕杰), Yang De-Zhuang(杨德庄), He Shi-Yu(何世禹), and Liu Chao-Ming(刘超铭). Chin. Phys. B, 2010, 19(6): 066103.
[13] Radiation effects on MOS and bipolar devices by 8 MeV protons, 60 MeV Br ions and 1 MeV electrons
Li Xing-Ji(李兴冀), Geng Hong-Bin(耿洪滨), Lan Mu-Jie(兰慕杰), Yang De-Zhuang(杨德庄), He Shi-Yu(何世禹), and Liu Chao-Ming(刘超铭). Chin. Phys. B, 2010, 19(5): 056103.
[14] Study of total ionizing dose radiation effects on enclosed gate transistors in a commercial CMOS technology
Li Dong-Mei(李冬梅), Wang Zhi-Hua(王志华), Huangfu Li-Ying(皇甫丽英), and Gou Qiu-Jing(勾秋静), . Chin. Phys. B, 2007, 16(12): 3760-3765.
[15] A novel technique for predicting ionizing radiation effects of commercial MOS devices
Zhang Guo-Qiang (张国强), Guo Qi (郭旗), Erkin (艾尔肯), Lu Wu (陆妩), Ren Di-Yuan (任迪远). Chin. Phys. B, 2004, 13(6): 948-953.
No Suggested Reading articles found!