Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108501    DOI: 10.1088/1674-1056/25/10/108501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Physical modeling of direct current and radio frequency characteristics for InP-based InAlAs/InGaAs HEMTs

Shu-Xiang Sun(孙树祥)1, Hui-Fang Ji(吉慧芳)1, Hui-Juan Yao(姚会娟)1, Sheng Li(李胜)1, Zhi Jin(金智)2, Peng Ding(丁芃)2, Ying-Hui Zhong(钟英辉)1
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China;
2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  

Direct current (DC) and radio frequency (RF) performances of InP-based high electron mobility transistors (HEMTs) are investigated by Sentaurus TCAD. The physical models including hydrodynamic transport model, Shockley-Read-Hall recombination, Auger recombination, radiative recombination, density gradient model and high field-dependent mobility are used to characterize the devices. The simulated results and measured results about DC and RF performances are compared, showing that they are well matched. However, the slight differences in channel current and pinch-off voltage may be accounted for by the surface defects resulting from oxidized InAlAs material in the gate-recess region. Moreover, the simulated frequency characteristics can be extrapolated beyond the test equipment limitation of 40 GHz, which gives a more accurate maximum oscillation frequency (fmax) of 385 GHz.

Keywords:  InP-based HEMT      hydrodynamic model      the current gain cutoff frequency (fT)      the maximum oscillation frequency (fmax)  
Received:  25 May 2016      Revised:  24 June 2016      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.61.Ey (III-V semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61404115 and 61434006), the Postdoctoral Science Foundation of Henan Province, China (Grant No. 2014006), and the Development Fund for Outstanding Young Teachers of Zhengzhou University (Grant No. 1521317004).

Corresponding Authors:  Ying-Hui Zhong     E-mail:  zhongyinghui@zzu.edu.cn

Cite this article: 

Shu-Xiang Sun(孙树祥), Hui-Fang Ji(吉慧芳), Hui-Juan Yao(姚会娟), Sheng Li(李胜), Zhi Jin(金智), Peng Ding(丁芃), Ying-Hui Zhong(钟英辉) Physical modeling of direct current and radio frequency characteristics for InP-based InAlAs/InGaAs HEMTs 2016 Chin. Phys. B 25 108501

[1] Wang L D, Ding P, Su Y B, Chen J, Zhang B C and Jin Z 2014 Chin. Phys. B 23 038501
[2] Li H O, Huang W, Tang CW, Deng X F and Lau K M 2011 Chin. Phys. B 20 068502
[3] Huang J, Li M, Zhao Q, Gu W W and Lau K M 2015 Chin. Phys. B 24 087035
[4] Deal, W R, Mei X B, Radisic V Leong K, Sarkozy S, Gorospe B, Lee J, Liu P H, Yoshida W, Lange M, Uyeda J and Lai R 2010 IEEE Microwave and Wireless Components Letters 20 289
[5] Liu L, Alt A R, Benedickter H and Bologenesi C R 2011 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Integration Technologies (IMWS), September 15-16, 2011, Sitges Barcelona pp. 9-12
[6] Radisc V, Leong K M, Mei X B, Sarkozy S, Yoshida W, Liu P H, Uyeda J and Beach W 2010, IEEE MTT-S International Microwave Symposium Digest (MTT), May 23-28, 2010 Anaheim, California, USA, pp. 45-48
[7] Deal W, Mei X B, Leong K M K H, Radisic V, Sarkozy S and Lai R 2011 IEEE Trans. Terahertz Sci. Technol. 1 25
[8] Deal W R, Radisic V, Scott D and Mei X B 2010 IEEE MTT-S International Microwave Symposium Digest, May 23-28, 2010, Anaheim, California, USA, p. 1
[9] Deal W R, Leong K, Zamora A, Radisic V and Mei X B 2014 IEEE MTT-S International Microwave Symposium (IMS), June 1-6, 2014, Tampa, Florida, USA, pp. 1-3
[10] Ahmad M, Butt H T, Tauqeer T and Missous M 2012 The 9th International Conference on Advanced Semiconductor Devices and Microsystems, November 11-15, 2012, Smolenice, Slovakia, pp. 187-190
[11] Pati S K, Pardeshi H, Raj G, Kumar N M and Sarkar C K 2013 Super- lattices and Microstructures 55 8
[12] Zhong Y H, Zhang Y M, Zhang Y M, Wang X T, Lv H L, Liu X Y and Jin Z 2013 Chin. Phys. B 22 128503
[13] Zhong Y H, Yang J, Li X J, Ding P and Jin Z 2015 J. Korean Phys. Soc. 66 1020
[14] Ge J, Liu H G, Su Y B, Cao Y X and Jin Z 2012 Chin. Phys. B 21 058501
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[3] Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs
Zhi-Hang Tong(童志航), Peng Ding(丁芃), Yong-Bo Su(苏永波), Da-Hai Wang(王大海), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(1): 018501.
[4] Enhancement of radiation hardness of InP-based HEMT with double Si-doped plane
Ying-Hui Zhong(钟英辉), Bo Yang(杨博), Ming-Ming Chang(常明铭), Peng Ding(丁芃), Liu-Hong Ma(马刘红), Meng-Ke Li(李梦珂), Zhi-Yong Duan(段智勇), Jie Yang(杨洁), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2020, 29(3): 038502.
[5] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[6] Effects of proton irradiation at different incident angles on InAlAs/InGaAs InP-based HEMTs
Shu-Xiang Sun(孙树祥), Zhi-Chao Wei(魏志超), Peng-Hui Xia(夏鹏辉), Wen-Bin Wang(王文斌), Zhi-Yong Duan(段智勇), Yu-Xiao Li(李玉晓), Ying-Hui Zhong(钟英辉), Peng Ding(丁芃), Zhi Jin(金智). Chin. Phys. B, 2018, 27(2): 028502.
[7] Drift vortices in inhomogeneous collisional dusty magnetoplasma
Jian-Rong Yang(杨建荣), Kui Lv(吕岿), Lei Xu(许磊), Jie-Jian Mao(毛杰键), Xi-Zhong Liu(刘希忠), Ping Liu(刘萍). Chin. Phys. B, 2017, 26(6): 065202.
[8] Dust acoustic waves in collisional uniform dense magnetoplasma
Jian-Rong Yang(杨建荣), Ting Xu(徐婷), Jie-Jian Mao(毛杰键), Ping Liu(刘萍), Xi-Zhong Liu(刘希忠). Chin. Phys. B, 2017, 26(1): 015202.
[9] Time-dependent Ginzburg–Landau equation for lattice hydrodynamic model describing pedestrian flow
Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军), Lo Siu-Ming (卢兆明). Chin. Phys. B, 2013, 22(7): 070507.
[10] The Korteweg-de Vires equation for the bidirectional pedestrian flow model considering the next-nearest-neighbor effect
Xu Li (徐立), Lo Siu-Ming (卢兆明), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2013, 22(12): 120508.
[11] A lattice hydrodynamical model considering turning capability
Tian Huan-Huan(田欢欢) and Xue Yu(薛郁) . Chin. Phys. B, 2012, 21(7): 070505.
[12] Flow difference effect in the two-lane lattice hydrodynamic model
Wang Tao(王涛), Gao Zi-You(高自友), Zhao Xiao-Mei(赵小梅), Tian Jun-Fang(田钧方), and Zhang Wen-Yi(张文义) . Chin. Phys. B, 2012, 21(7): 070507.
[13] Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect
Zhao Min(赵敏), Sun Di-Hua(孙棣华), and Tian Chuan(田川) . Chin. Phys. B, 2012, 21(4): 048901.
[14] Multiple flux difference effect in the lattice hydrodynamic model
Wang Tao(王涛), Gao Zi-You(高自友), and Zhao Xiao-Mei(赵小梅) . Chin. Phys. B, 2012, 21(2): 020512.
[15] A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect
Tian Chuan(田川), Sun Di-Hua(孙棣华), and Yang Shu-Hong(阳树洪). Chin. Phys. B, 2011, 20(8): 088902.
No Suggested Reading articles found!