CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates |
Qi-Feng Zhao(赵启凤)1, Yi-Qi Zhuang(庄奕琪)1, Jun-Lin Bao(包军林)1, Wei Hu(胡为)2 |
1 School of Microelectronics, Xidian University, Xi'an 710071, China; 2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China |
|
|
Abstract It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results.
|
Received: 28 June 2015
Revised: 27 December 2015
Accepted manuscript online:
|
PACS:
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.80.Ed
|
(γ-ray effects)
|
|
85.40.Qx
|
(Microcircuit quality, noise, performance, and failure analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101 and 61204092 ). |
Corresponding Authors:
Jun-Lin Bao
E-mail: baoing@126.com
|
Cite this article:
Qi-Feng Zhao(赵启凤), Yi-Qi Zhuang(庄奕琪), Jun-Lin Bao(包军林), Wei Hu(胡为) Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates 2016 Chin. Phys. B 25 046104
|
[1] |
Witczak S C, Schrimpf R D, Galloway K F, Fleetwood D M, Schrimpf R D, Pease R L, Puhl J M, Schmidt D M, Combs W E and Suehle J S 1996 IEEE Trans. Nucl. Sci. 43 3151
|
[2] |
Petrov A S and Ulimov V N 2012 Microelectronics Reliability 52 2435
|
[3] |
Schrimpf R D 1996 IEEE Trans. Nucl. Sci. 43 787
|
[4] |
Schmidt D M, Wu A, Schrimpf R D, Fleetwood D M and Pease R L 1996 IEEE Trans. Nucl. Sci. 43 3032
|
[5] |
Enlow E W, Pease R L, Combs W E and Schrimpf R D 1991 IEEE Trans. Nucl. Sci. 38 1342
|
[6] |
Pease R L, Schrimpf R D and Fleetwood D M 2009 IEEE Trans. Nucl. Sci. 56 1894
|
[7] |
Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706
|
[8] |
Pease R L 2003 IEEE Trans. Nucl. Sci. 50 539
|
[9] |
Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937
|
[10] |
Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A and Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650
|
[11] |
Gonzalez-Velo Y, Boch J and Saigné F 2011 IEEE Trans. Nucl. Sci. 58 2953
|
[12] |
Boch J, Saigné F, Schrimpf R D, Vaillé J R, Dusseau L and Lorf'evre E 2006 IEEE Trans. Nucl. Sci. 53 3655
|
[13] |
Adell P C, Esqueda I S, Barbaby H J, Rax B and Johnston A J 2012 IEEE Trans. Nucl. Sci. 59 3081
|
[14] |
Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2012 IEEE Trans. Nucl. Sci. 59 3069
|
[15] |
Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J and Wu X 2012 Acta Phys. Sin. 61 236103 (in Chinese)
|
[16] |
Xi S B, Lu W, Wang Z K, Ren D Y, Zhou D, Wen L and Sun J 2012 Acta Phys. Sin. 61 076101 (in Chinese)
|
[17] |
Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H and Jiang K 2014 Acta Phys. Sin. 63 116101 (in Chinese)
|
[18] |
Prince J L and Stehlin R A 1971 IEEE Trans. Nucl. Sci. 18 404
|
[19] |
Zhao Q F, Zhuang Y Q, Bao J L and Hu W 2015 Acta Phys. Sin. 64 136104 (in Chinese)
|
[20] |
Sah C T, Noyce R N and Shockley W 1957 Proc. IRE 45 1228
|
[21] |
Kosier S L, Schrimpf R D, Nowlin R N and Fleetwood D M 1993 IEEE Trans. Nucl. Sci. 40 1276
|
[22] |
Pershenkov V S, Maslov V B, Cherepko S V, Shvetzov-Shilovsky I N, Belyakov V V, Sogoyan A V, Rusanovsky V I, Ulimov V N, Emelianov V V and Nasibullin V S 1997 IEEE Trans. Nucl. Sci. 44 1840
|
[23] |
Stoisiek M and Wolf D 1980 IEEE Trans. Electron. Dev. 27 1753
|
[24] |
Van der Ziel A, Zhang X and Pawlikiewicz A H 1986 IEEE Trans. Electron. Dev. 33 1371
|
[25] |
Jöntsch O 1987 IEEE Trans. Electron. Dev. 34 1100
|
[26] |
Kleinpenning T G M 1992 IEEE Trans. Electron. Dev. 39 1501
|
[27] |
Kleinpenning T G M 1994 IEEE Trans. Electron. Dev. 41 1981
|
[28] |
Deen M J and Pascal F 2004 IEEE Proc.-Circuits Devices Syst. 151 125
|
[29] |
Mounib A, Ghibaudo G and Balestra F 1996 J. Appl. Phys. 79 3330
|
[30] |
Zhuang Y Q and Sun Q 1993 Noise and Its Minimizing Technology in Semiconductor Devices (Beijing: National Defenses Industry Press) p. 83 (in Chinese)
|
[31] |
A L McWhorter A L 1957 Semiconductor surface physics (Philadelphia: University of Pennsylrnia Press)
|
[32] |
Zhuang Y Q and Sun Q 1991 IEEE Trans. Electron Dev. 38 2540
|
[33] |
Bao J L, Zhuang Y Q and Du L 2004 Chin. J. Sci. Instrum. 25 335 (in Chinese)
|
[34] |
Deen M J, Rumyantsev S L and Schroter M 1999 J. Appl. Phys. 85 1192
|
[35] |
Pease R L, Schrimpf R D and Fleetwood D M 2009 IEEE Trans. Nucl. Sci. 56 1894
|
[36] |
Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A Jr, DeLaus M, Winokur P S, Wei A, Combs W E and Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871
|
[37] |
Fleetwood D M, Riewe L C, Schwank J R, Witczak S C and Schrimpf R D 1996 IEEE Trans. Nucl. Sci. 43 2537
|
[38] |
Witczak S C, Lacoe R C, Mayer D C, Fleetwood D M, Schrimpf R D and Galloway K F 1998 IEEE Trans. Nucl. Sci. 45 2339
|
[39] |
Graves R J, Cirba C R, Schrimpf R D, Milanowski R J, Michez A, Fleetwood D M, Wiczak S C and Saigne F 1998 IEEE Trans. Nucl. Sci. 45 2352
|
[40] |
Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A and Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650
|
[41] |
Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E and Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901
|
[42] |
Tsetseris L, Schrimpf R D, Fleetwood D M, Pease R L and Pantelides S T 2005 IEEE Trans. Nucl. Sci. 52 2265
|
[43] |
Boch J, Saigne F, Touboul A D, Ducret S, Carlotti J F, Bernard M, Schrimpf R D, Wrobel F and Sarrabayrouse G 2006 Appl. Phys. Lett. 88 232113
|
[44] |
Boch J, Saigne F, Schrimpf R D, Vaille J R, Dusseau L and Lorfevre E 2006 IEEE Trans. Nucl. Sci. 53 3655
|
[45] |
Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L and Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986
|
[46] |
Hjalmarson H P, Pease R L and Devine R 2008 IEEE Trans. Nucl. Sci. 55 3009
|
[47] |
Freitag R K and Brown D B 1998 IEEE Trans. Nucl. Sci. 45 2649
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|