Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 046104    DOI: 10.1088/1674-1056/25/4/046104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates

Qi-Feng Zhao(赵启凤)1, Yi-Qi Zhuang(庄奕琪)1, Jun-Lin Bao(包军林)1, Wei Hu(胡为)2
1 School of Microelectronics, Xidian University, Xi'an 710071, China;
2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
Abstract  It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results.
Keywords:  radiation      1/f noise      bipolar junction transistors  
Received:  28 June 2015      Revised:  27 December 2015      Accepted manuscript online: 
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Ed (γ-ray effects)  
  85.40.Qx (Microcircuit quality, noise, performance, and failure analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101 and 61204092 ).
Corresponding Authors:  Jun-Lin Bao     E-mail:  baoing@126.com

Cite this article: 

Qi-Feng Zhao(赵启凤), Yi-Qi Zhuang(庄奕琪), Jun-Lin Bao(包军林), Wei Hu(胡为) Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates 2016 Chin. Phys. B 25 046104

[1] Witczak S C, Schrimpf R D, Galloway K F, Fleetwood D M, Schrimpf R D, Pease R L, Puhl J M, Schmidt D M, Combs W E and Suehle J S 1996 IEEE Trans. Nucl. Sci. 43 3151
[2] Petrov A S and Ulimov V N 2012 Microelectronics Reliability 52 2435
[3] Schrimpf R D 1996 IEEE Trans. Nucl. Sci. 43 787
[4] Schmidt D M, Wu A, Schrimpf R D, Fleetwood D M and Pease R L 1996 IEEE Trans. Nucl. Sci. 43 3032
[5] Enlow E W, Pease R L, Combs W E and Schrimpf R D 1991 IEEE Trans. Nucl. Sci. 38 1342
[6] Pease R L, Schrimpf R D and Fleetwood D M 2009 IEEE Trans. Nucl. Sci. 56 1894
[7] Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706
[8] Pease R L 2003 IEEE Trans. Nucl. Sci. 50 539
[9] Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937
[10] Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A and Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650
[11] Gonzalez-Velo Y, Boch J and Saigné F 2011 IEEE Trans. Nucl. Sci. 58 2953
[12] Boch J, Saigné F, Schrimpf R D, Vaillé J R, Dusseau L and Lorf'evre E 2006 IEEE Trans. Nucl. Sci. 53 3655
[13] Adell P C, Esqueda I S, Barbaby H J, Rax B and Johnston A J 2012 IEEE Trans. Nucl. Sci. 59 3081
[14] Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2012 IEEE Trans. Nucl. Sci. 59 3069
[15] Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J and Wu X 2012 Acta Phys. Sin. 61 236103 (in Chinese)
[16] Xi S B, Lu W, Wang Z K, Ren D Y, Zhou D, Wen L and Sun J 2012 Acta Phys. Sin. 61 076101 (in Chinese)
[17] Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H and Jiang K 2014 Acta Phys. Sin. 63 116101 (in Chinese)
[18] Prince J L and Stehlin R A 1971 IEEE Trans. Nucl. Sci. 18 404
[19] Zhao Q F, Zhuang Y Q, Bao J L and Hu W 2015 Acta Phys. Sin. 64 136104 (in Chinese)
[20] Sah C T, Noyce R N and Shockley W 1957 Proc. IRE 45 1228
[21] Kosier S L, Schrimpf R D, Nowlin R N and Fleetwood D M 1993 IEEE Trans. Nucl. Sci. 40 1276
[22] Pershenkov V S, Maslov V B, Cherepko S V, Shvetzov-Shilovsky I N, Belyakov V V, Sogoyan A V, Rusanovsky V I, Ulimov V N, Emelianov V V and Nasibullin V S 1997 IEEE Trans. Nucl. Sci. 44 1840
[23] Stoisiek M and Wolf D 1980 IEEE Trans. Electron. Dev. 27 1753
[24] Van der Ziel A, Zhang X and Pawlikiewicz A H 1986 IEEE Trans. Electron. Dev. 33 1371
[25] Jöntsch O 1987 IEEE Trans. Electron. Dev. 34 1100
[26] Kleinpenning T G M 1992 IEEE Trans. Electron. Dev. 39 1501
[27] Kleinpenning T G M 1994 IEEE Trans. Electron. Dev. 41 1981
[28] Deen M J and Pascal F 2004 IEEE Proc.-Circuits Devices Syst. 151 125
[29] Mounib A, Ghibaudo G and Balestra F 1996 J. Appl. Phys. 79 3330
[30] Zhuang Y Q and Sun Q 1993 Noise and Its Minimizing Technology in Semiconductor Devices (Beijing: National Defenses Industry Press) p. 83 (in Chinese)
[31] A L McWhorter A L 1957 Semiconductor surface physics (Philadelphia: University of Pennsylrnia Press)
[32] Zhuang Y Q and Sun Q 1991 IEEE Trans. Electron Dev. 38 2540
[33] Bao J L, Zhuang Y Q and Du L 2004 Chin. J. Sci. Instrum. 25 335 (in Chinese)
[34] Deen M J, Rumyantsev S L and Schroter M 1999 J. Appl. Phys. 85 1192
[35] Pease R L, Schrimpf R D and Fleetwood D M 2009 IEEE Trans. Nucl. Sci. 56 1894
[36] Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A Jr, DeLaus M, Winokur P S, Wei A, Combs W E and Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871
[37] Fleetwood D M, Riewe L C, Schwank J R, Witczak S C and Schrimpf R D 1996 IEEE Trans. Nucl. Sci. 43 2537
[38] Witczak S C, Lacoe R C, Mayer D C, Fleetwood D M, Schrimpf R D and Galloway K F 1998 IEEE Trans. Nucl. Sci. 45 2339
[39] Graves R J, Cirba C R, Schrimpf R D, Milanowski R J, Michez A, Fleetwood D M, Wiczak S C and Saigne F 1998 IEEE Trans. Nucl. Sci. 45 2352
[40] Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A and Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650
[41] Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E and Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901
[42] Tsetseris L, Schrimpf R D, Fleetwood D M, Pease R L and Pantelides S T 2005 IEEE Trans. Nucl. Sci. 52 2265
[43] Boch J, Saigne F, Touboul A D, Ducret S, Carlotti J F, Bernard M, Schrimpf R D, Wrobel F and Sarrabayrouse G 2006 Appl. Phys. Lett. 88 232113
[44] Boch J, Saigne F, Schrimpf R D, Vaille J R, Dusseau L and Lorfevre E 2006 IEEE Trans. Nucl. Sci. 53 3655
[45] Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L and Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986
[46] Hjalmarson H P, Pease R L and Devine R 2008 IEEE Trans. Nucl. Sci. 55 3009
[47] Freitag R K and Brown D B 1998 IEEE Trans. Nucl. Sci. 45 2649
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[5] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[6] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[7] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[8] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[13] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[14] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[15] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
No Suggested Reading articles found!