Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037302    DOI: 10.1088/1674-1056/19/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Device research on GaAs-based InAlAs/InGaAs metamorphic high electron mobility transistors grown by metal organic chemical vapour deposition

Xu Jing-Bo(徐静波), Zhang Hai-Ying(张海英), Fu Xiao-Jun(付晓君), Guo Tian-Yi(郭天义), and Huang Jie(黄杰)
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  This paper applies a novel quad-layer resist and e-beam lithography technique to fabricate a GaAs-based InAlAs/InGaAs metamorphic high electron mobility transistor (HEMT) grown by metal organic chemical vapour deposition (MOCVD). The gate length of the metamorphic HEMT was 150 nm, the maximum current density was 330 mA/mm, the maximum transconductance was 470 mS/mm, the threshold voltage was -0.6 V, and the maximum current gain cut-off frequency and maximum oscillation frequency were 102 GHz and 450 GHz, respectively. This is the first report on tri-termination devices whose frequency value is above 400 GHz in China. The excellent frequency performances promise the possibility of metamorphic HEMTs grown by MOCVD for millimetre-wave applications, and more outstanding device performances would be obtained after optimizing the material structure, the elaborate T-gate and other device processes further.
Keywords:  GaAs-based metamorphic HEMT      maximum current gain cut-off frequency      maximum oscillation frequency      T-gate  
Received:  25 May 2009      Revised:  09 June 2009      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  85.40.Hp (Lithography, masks and pattern transfer)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No.~G2002CB311901) and Institute of Microelectronics, Chinese Academy of Sciences, Dean Fund (Grant No.~06SB124004).

Cite this article: 

Xu Jing-Bo(徐静波), Zhang Hai-Ying(张海英), Fu Xiao-Jun(付晓君), Guo Tian-Yi(郭天义), and Huang Jie(黄杰) Device research on GaAs-based InAlAs/InGaAs metamorphic high electron mobility transistors grown by metal organic chemical vapour deposition 2010 Chin. Phys. B 19 037302

[1] Jin Z, Su Y B, Cheng W, Liu X Y, Xu A H and Qi M 2008 Chin. Phys. Lett. 25 2686
[2] Zhou S L, Huang H, Huang Y Q and Ren X M 2007 Acta Phys. Sin.56 2890 (inChinese)
[3] Li D L and Zeng Y P 2006 Chin. Phys. 15 2735
[4] Yoshimi Y, Akira E, Keisuke S, Kohki H, Toshiaki M, Satoshi H andTakashi M 2002 IEEE Electron Device Letter 23 573
[5] Lai R, Mei X B, Deal W R, Yoshida W, Kim Y M, Liu P H, Lee J, Uyeda J,Radisic V, Lange M, Gaier T, Samoska L and Fung A 2007 IEEEInternational Electron Devices Meeting 10--12 2007 Washington p609
[6] Qiu Z J, Jiang C P, Gui Y S, Shu X Z, Guo S L, Chu J H, Cui L J, Zeng YP, Zhu Z P and Wang B Q 2003 Acta Phys. Sin.522879 (in Chinese)
[7] Li H O, Tang C W and Lau K M 2008 IEEE Electron Device Letters 29 561
[8] Maher H, Makoudi I E, Frijlink P, Smith D, Rocchi M, Bollaert S,Lepilliet S and Dambrine G 2007 IEEE Trans. on ElectronDevices 54 1626
[9] Lee K W, Lee K L, Lin X Z, Tu C H and Wang Y H 2007 IEEE Trans.on Electron Devices 54 418
[10] Lin C K, Wang W K, Chan Y J and Chiou H K 2005 IEEE Trans. on Electron Devices 52 1
[11] Hsu W C, Chen Y J, Lee C S, Wang T B, Huang J C, Huang D H, Su K H, LinY S and Wu C L 2005 IEEE Trans. on Electron Devices 52 1079
[12] Lee K S, Kim Y S, Hong Y K and Jeong Y H 2007 IEEE Electron Device Letters 28 672
[13] Lim B O, Lee M K, Baek T J, Han M,Kim S C and Rhee J K 2007 IEEE Electron Device Letters 28 546
[14] Elgaid K, McLelland H, Holland M, Moran D A J, Stanley C R and Thayne IG 2005 IEEE Electron Device Letters 26 784
[15] Xu J B, Zhang H Y, Fu X J, Guo T Y and Huang J 2008 Chin. Sci. Bullet . 53 3585
[1] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[2] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[3] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[4] Physical modeling of direct current and radio frequency characteristics for InP-based InAlAs/InGaAs HEMTs
Shu-Xiang Sun(孙树祥), Hui-Fang Ji(吉慧芳), Hui-Juan Yao(姚会娟), Sheng Li(李胜), Zhi Jin(金智), Peng Ding(丁芃), Ying-Hui Zhong(钟英辉). Chin. Phys. B, 2016, 25(10): 108501.
[5] 100-nm T-gate InAlAs/InGaAs InP-based HEMTs with fT=249 GHz and fmax=415 GHz
Wang Li-Dan (汪丽丹), Ding Peng (丁芃), Su Yong-Bo (苏永波), Chen Jiao (陈娇), Zhang Bi-Chan (张毕禅), Jin Zhi (金智). Chin. Phys. B, 2014, 23(3): 038501.
[6] Radio-frequency transistors from millimeter-scale graphene domains
Wei Zi-Jun (魏子钧), Fu Yun-Yi (傅云义), Liu Jing-Bo (刘竞博), Wang Zi-Dong (王紫东), Jia Yue-Hui (贾越辉), Guo Jian (郭剑), Ren Li-Ming (任黎明), Chen Yuan-Fu (陈远富), Zhang Han (张酣), Huang Ru (黄如), Zhang Xing (张兴). Chin. Phys. B, 2014, 23(11): 117201.
[7] 0.15-μm T-gate In0.52Al0.48As/In0.53Ga0.47As InP-based HEMT with fmax of 390 GHz
Zhong Ying-Hui (钟英辉), Zhang Yu-Ming (张玉明), Zhang Yi-Men (张义门), Wang Xian-Tai (王显泰), Lü Hong-Liang (吕红亮), Liu Xin-Yu (刘新宇), Jin Zhi (金智). Chin. Phys. B, 2013, 22(12): 128503.
No Suggested Reading articles found!