Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 056402    DOI: 10.1088/1674-1056/19/5/056402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Shock-induced phase transition and spalling characteristic in pure iron and FeMnNi alloy

Chen Yong-Tao(陈永涛), Tang Xiao-Jun(唐小军), and Li Qing-Zhong(李庆忠)
Laboratory for Shock Wave and Detonation Physical Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  This paper provides an investigation of the phase transition and spalling characteristic induced during shock loading and unloading in the pure iron and the FeMnNi alloy. The impact for the pure iron is symmetric and with same-thickness for both the flyer and the target plate. It is found that an abnormal multiple spalling happens in the pure iron sample as the pressure exceeds the $\alpha -\varepsilon $ transition threshold of 13 GPa. In the symmetric and same-thickness impact and reverse impact experiments of the FeMnNi alloy, two abnormal tension regions occur when the pressure exceeds the $\alpha -\varepsilon $ transition threshold of 6.3 GPa, and the reverse phase transition $\varepsilon -\alpha $ begins below 4.2 GP. The experimental process is simulated successfully from the non-equilibrium mixture phase and Boettger's model. Such abnormal spalling phenomena are believed to relate to the shocked $\alpha -\varepsilon $ phase transition. The possible reasons for the abnormal multiple spalling, which occurs during the symmetric and same-thickness impact experiments of pure iron and FeMnNi alloy, are discussed.
Keywords:  pure iron      FeMnNi alloy      phase transition      spalling behaviour  
Received:  19 October 2009      Revised:  25 November 2009      Accepted manuscript online: 
PACS:  64.70.K-  
  62.50.-p (High-pressure effects in solids and liquids)  
  62.30.+d (Mechanical and elastic waves; vibrations)  
  62.20.M- (Structural failure of materials)  
Fund: Project supported by the National Science Foundations of China (Grant Nos.~10776032 and 10902102) and \par Science Foundation of China Academy of Engineering Physics (Grant Nos.~20060104 and 2009B0201014).

Cite this article: 

Chen Yong-Tao(陈永涛), Tang Xiao-Jun(唐小军), and Li Qing-Zhong(李庆忠) Shock-induced phase transition and spalling characteristic in pure iron and FeMnNi alloy 2010 Chin. Phys. B 19 056402

[1] Bancroft D, Peterson E and Minshall S 1956 J. Appl. Phys. 27 291
[2] Barker L M and Hollenbach R E 1974 J. Appl. Phys. 45 4872
[3] Shockey D A, Curran D R and de Carli P S 1975 J. Appl. Phys. 46 3766
[4] Veeser L R, Gray G T, Vorthman J E, Rodriguez P J, Hixson R S and Hayes D B 1999 Shock Compression of Condensed Matter 73
[5] Christophe V and Gilles R 2003 Shock Compression of Condensed Matter 511
[6] Christophe V, Francois B and Gilles R 2005 Shock Compression of Condensed Matter 678
[7] Tang Z P, Tang X J, Zhang X H, Hu H B and Xu W W 2005 Shock Compression of Condensed Matter 662
[8] Zhu Z Y, Wang W Q and Liu G D 2005 Acta Phys. Sin. 54 4909 (in Chinese)
[9] Zheng H X, Liu J, Xia M X and Li J G 2005 Acta Phys. Sin. 54 1719 (in Chinese)
[10] Cui X L, Zhu W J, Deng X L, Li Y J and He H L 2006 Acta Phys. Sin. 55 5545 (in Chinese)
[11] Shao J L, Wang P, Qin C S and Zhou H Q 2008 Acta Phys. Sin. 57 1254 (in Chinese)
[12] Shao J L, Wang P, Qin C S and Zhou H Q 2007 Acta Phys. Sin. 56 5389 (in Chinese)
[13] Shao J L, Wang P and Qin C S 2009 Acta Phys. Sin. 58 1936 (in Chinese)
[14] Hawreliak J, Colvin J D and Eggert J H 2006 Phys. Rev. B 74 184107
[15] Hawreliak J, Butterfield M, Huw D, Daniel K and Giles K 2007 Shock Compression of Condensed Matter 1327
[16] Zhang X H, Tang Z P and Xu W W 2007 Explosion and Shock Waves 27 103 (in Chinese)
[17] Chen Y T, Hu H B, Tang X J, Li Q Z, Peng Q X and Hu J B 2007 Shock Compression of Condensed Matter 493
[18] Boettger J C and Wallace D C 1997 Phys. Rev. B 55 2840
[19] Andrews D J 1971 J. Comp. Phys. 7 310
[20] Hayes D B 1974 J. Appl. Phys. 45 1208
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!