Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 056403    DOI: 10.1088/1674-1056/19/5/056403
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Solving the initial condition of the string relaxation equation of the string model for glass transition: part-I

Zhang Jin-Lu(张晋鲁)a)b), Wang Li-Na(王丽娜) a), Zhou Heng-Wei(周恒为)a), Zhang Li-Li(张丽丽)a), Zhao Xing-Yu(赵兴宇)a), and Huang Yi-Neng(黄以能)a)b)†
a Department of Physics and National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China; Xinjiang Lab of Phase-transitions and Microstructures of Condensed Matters, Yili Normal University, Yining 835000, China
Abstract  The string model for the glass transition can quantitatively describe the universal $\alpha $-relaxation in glassformers, including the average relaxation time, the distribution function of the relaxation time, and the relaxation strength as functions of temperature. The string relaxation equation (SRE) of the model, at high enough temperatures, simplifies to the well-known single particle mean-field Debye relaxation equation, and at low enough temperatures to the well-known Rouse--Zimm relaxation equation that describes the relaxation dynamics of linear macromolecules. However, its initial condition, necessary to the further model predictions of glassy dynamics, has not been solved. In this paper, the special initial condition (SIC) of the SRE, i.e. for straight strings and the dielectric spectrum technique that is one of the most common methods to measure the glassy dynamics, was solved exactly. It should be expected that the obtained SIC would benefit the solution of the general initial condition of the SRE of the string model, i.e. for stochastically spatially configurating strings, as will be described in separate publications.
Keywords:  glass transition      relaxation phenomenon      dielectric relaxation  
Received:  01 June 2009      Revised:  02 November 2009      Accepted manuscript online: 
PACS:  64.70.P- (Glass transitions of specific systems)  
  77.22.Gm (Dielectric loss and relaxation)  
  63.70.+h (Statistical mechanics of lattice vibrations and displacive phase transitions)  
  61.43.Fs (Glasses)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos.~10774064 and 30860076), the Key Foundation of Xinjiang Education Department (Grant No.~XJEDU2007137), and the Natural Science Foundations of Xinjiang Science and Technology Department of China (Grant Nos.~2008211042 and 200821184).

Cite this article: 

Zhang Jin-Lu(张晋鲁), Wang Li-Na(王丽娜), Zhou Heng-Wei(周恒为), Zhang Li-Li(张丽丽), Zhao Xing-Yu(赵兴宇), and Huang Yi-Neng(黄以能) Solving the initial condition of the string relaxation equation of the string model for glass transition: part-I 2010 Chin. Phys. B 19 056403

[1] Angell C A 1995 Science 267 1924
[2] Stillinger F H 1995 Science 267 1935
[3] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M Q and Wang W H 2007 Science 315 1385
[4] Zhao Z F, Wen P, Shek C H and Wang W H 2007 Phys. Rev. B 75 174201
[5] Ediger M D, Angell C A and Nagel S R 1996 J. Phys. Chem. 100 13200
[6] Debenedetti P G and Stillinger F H 2001 Nature 418 259
[7] Donth E 2001 The Glass Transition (Berlin: Spring)
[8] Turnbull D 1949 Contem. Phys. 10 473[8a]Cohen M H and Grest G S 1979 Phys. Rev. B 20 1077
[9] Adam G and Gibbs J H 1965 J. Chem. Phys. 43 139
[10] Ngai K L 1979 Comm. Sol. Stat. Phys. 9 127[10a] Ngai K L 1979 Comm. Sol. Stat. Phys. 9 149
[11] Das S P 2004 Rev. Mod. Phys. 76 785.
[12] Ritort F and Sollich P 2003 Adv. Phys. 52 219
[13] Kivelson D, Kivelson S A, Zhao X, Nussinov Z and Tarjus G 1995 Physica A 219 27
[14] Chamberlin R V 1995 Phys. Rev. Lett. 82 2520
[15] Anderson P W 1995 Science 267 1615.
[16] Lunkenheimer P, Schneider U, Brand R and Loidl A 2000 Contemp. Phys. 41 15
[17] Brand R, Lunkenheimer P and Loidl A 2002 J. Chem. Phys. 116 10386
[18] Lunkenheimer P and Loidl A 2006 J. Non-Crystal. Sol. 352 4556
[19] Huang Y N, Wang C J and Riande E 2005 J. Chem. Phys. 122 144502
[20] B\"{ottcher C F J and Bordewijk P 1978 Theory of Electric Polarization (Amsterdam: Elsevier) vol.II[20a] Yin Z W 2003 Dielectrics Physics (Beijing: Scientific Publication) 2${ nd$ edition
[21] Weeks E R, Crocker J C, Levitt A C, Schofield A and Weitz D A 2000 Science 287 627
[22] Pouligny B, Malzbender R, Ryan P and Clark N A 1990 Phys. Rev. B 42 988
[23] Glotzer S C 2000 J. Non-Cryst. Solids 274 342
[24] Chen Z H, Liu L J, Zhang B, Xi Y, Wang Q and Zu F Q 2004 Acta Phys. Sin. 53 3839 (in Chinese)
[25] Dong Z G, Shen M R, Xu R, Gan Z Q and Ge S B 2002 Acta Phys. Sin. 51 2896 (in Chinese)
[26] Shao S F, Zheng P, Zhang J L, Niu X K, Wang C L and Zhong W L 2006 Acta Phys. Sin. 55 6661 (in Chinese)
[27] Li J D, Deng R Z, Chen M and Zheng F 1997 Acta Phys. Sin. 46 155 (in Chinese)
[28] Liu P, He Y, Li J, Zhu G Q and Bian X B 2007 Acta Phys. Sin. 56 5489 (in Chinese)
[29] Chen M, Li J D, Li X Q and Fu D S 1994 Acta Phys. Sin. 43 1029 (in Chinese)
[30] Li J D, Li J B and Fu S L 1993 Acta Phys. Sin. 42 674 (in Chinese)
[31] Zhao M L, Zhong W L, Wang C L, Wang J F and Zhang P L 2002 Acta Phys. Sin. 51 1856 (in Chinese)
[32] Li S T, Cheng P F, Zhao L and Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese)
[33] Li J D, Cao W Q, Liu J D and Xiao Z M 1998 Acta Phys. Sin. 47 1548 (in Chinese)
[34] Li J D, Li J B, Fu S L and Shen W B 1992 Acta Phys. Sin. 41 155 (in Chinese)
[35] Zhao S C, Li G R, Zhang L N, Wang T B and Ding A L 2006 Acta Phys. Sin. 55 3711 (in Chinese)
[36] Qiu Z Y, Pan S, Hu L, Liu X and Zhou L W 1997 Acta Phys. Sin. 46 314 (in Chinese)
[37] Jiang X P, Fang J W, Zeng H R, Pan X M, Chen D R and Yin Q R 2000 Acta Phys. Sin. 49 802 (in Chinese)
[38] Li J D, Cao W Q, Li X Q and Fu D S 1996 Acta Phys. Sin. 45 1225 (in Chinese)
[39] Zhao M L, Wang C L, Zhong W L, Zhang P L and Wang J F 2002 Acta Phys. Sin. 51 420 (in Chinese)
[40] Zhao M L, Yi X J, Wang C L, Wang J F and Zhang J L 2006 Chin. Phys. 15 1611
[41] Wen C 1995 Chin. Phys. 4 54
[42] Zhao H P, Liu Z Y and Liu Y Y 2001 Chin. Phys. 10 35
[43] Wang X J, Gong Z Q, Qian Y F, Zhu J and Chen X B 2007 Chin. Phys. 16 2131
[44] Wang Q, Qiang J B, Wang Y M, Xia J H, Lin Z, Zhang X F and Dong C 2006 Acta Phys. Sin. 55 378 (in Chinese)
[45] Zhang H T, Liu R S and Hou Z 2006 Acta Phys. Sin. 55 2409 (in Chinese)
[46] Zhou H W, Zhang J L, Huang Y N, Ying X N, Zhang L, Wu W H and Shen Y F 2007 Acta Phys. Sin. 56 6547 (in Chinese)
[47] Wang Z Y, Yang Y S, Tong W H, Li H Q and Hu Z L 2007 Acta Phys. Sin. 56 1543 (in Chinese)
[48] Yi X H, Liu R S, Tian Z A, Hou Z Y, Wang X and Zhou Q Y 2006 Acta Phys. Sin. 55 5386 (in Chinese)
[49] Zhu K J, Qin X K, Chen H and Wu X 1993 Acta Phys. Sin. 42 1612 (in Chinese)
[50] Xia M X, Meng Q G, Zhang S G, Ma C L and Li J G 2006 Acta Phys. Sin. 55 6543 (in Chinese)
[51] Yu P, Bai H Y, Tang M B, Wang W L and Wang W H 2005 Acta Phys. Sin. 54 3284 (in Chinese)
[52] Hou Z Y, Liu R S, Li C S, Zhou Q Y and Zheng C X 2005 Acta Phys. Sin. 54 5723 (in Chinese)
[53] Zhang L L, Zhang J L, Jiang J G, Zhou H W and Huang Y N 2008 Acta Phys. Sin. 57 5817 (in Chinese)
[54] Wei H Q, Long Z L, Zhang Z C, Li X A, Peng J and Zhang P 2009 Acta Phys. Sin. 58 2556 (in Chinese)
[55] Hou Z Y, Liu R S, Wang X, Tian Z A, Zhou Q Y and Chen Z H 2007 Acta Phys. Sin. 56 376 (in Chinese)
[56] Li J, Zhang Y and Zhang S C 1996 Acta Phys. Sin. 45 1359 (in Chinese)
[57] Chen X H, Peng J C, Chen K Q and Chen Z C 1998 Acta Phys. Sin. 47 672 (in Chinese)
[58] Zhao J Z, Liu J, Zhao Y and Hu Z Q 2007 Acta Phys. Sin. 56 443 (in Chinese)
[59] Cheng Z Y, Yao X and Zhang L Y 1996 Acta Phys. Sin. 45 1026 (in Chinese)
[60] Zhao Z F, Zhang Z, Li Z, Wei P, Zhao D Q, Pan M X, Wang W L and Wang W H 2004 Acta Phys. Sin. 53 850 (in Chinese)
[61] Vogel H 1921 Phys. Z. 22 645[61a] Fulcher G S 1925 J. Am. Ceram. Soc. 8 339[61b] Tammann G and Hesse W 1926 Z. Anorg. Allg. Chem. 156 245
[63] Kohlrausch R 1874 Ann. Phys. Chem. (Leipzig) 91 179[63a] Williams G and Watts D C 1970 Trans. Faraday Soc. 66 80[63b] D avidson D W and Cole R H 1950 J. Chem. Phys. 18 1417
[64] Rouse P E 1953 J. Chem. Phys. 21 1273[64a] Zimm B 1956 J. Chem. Phys. 24 269
[1] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[2] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[3] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
[4] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
[5] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[6] Recrystallization of freezable bound water in aqueous solutions of medium concentrations
Lishan Zhao(赵立山), Liqing Pan(潘礼庆), Ailing Ji(纪爱玲), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2016, 25(7): 075101.
[7] Transport coefficients and mechanical response in hard-disk colloidal suspensions
Bo-Kai Zhang(张博凯), Jian Li(李健), Kang Chen(陈康), Wen-De Tian(田文得), Yu-Qiang Ma(马余强). Chin. Phys. B, 2016, 25(11): 116101.
[8] Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films
Ali Badawi, N. Al-Hosiny. Chin. Phys. B, 2015, 24(10): 105101.
[9] Sub-diffusive scaling with power-law trapping times
Luo Liang (罗亮), Tang Lei-Han (汤雷翰). Chin. Phys. B, 2014, 23(7): 070514.
[10] Dielectric spectroscopy studies of ZnO single crystal
Cheng Peng-Fei (成鹏飞), Li Sheng-Tao (李盛涛), Wang Hui (王辉). Chin. Phys. B, 2013, 22(10): 107701.
[11] Liquid to glass transition of tetrahydrofuran and 2-methyltetrahydrofuran
Tan Rong-Ri (谈荣日), Shen Xin (沈鑫), Hu Lin (胡林), Zhang Feng-Shou (张丰收 ). Chin. Phys. B, 2012, 21(8): 086402.
[12] Simulations of the flipping images and microparameters of molecular orientations in liquids according to molecule string model
Wang Li-Na (王丽娜), Zhao Xing-Yu (赵兴宇), Zhang Li-Li (张丽丽), Huang Yi-Neng (黄以能 ). Chin. Phys. B, 2012, 21(8): 086403.
[13] Solving the initial condition of the string relaxation equation of the string model for glass transition: part-II
Zhang Jin-Lu(张晋鲁), Wang Li-Na(王丽娜), Zhao Xing-Yu(赵兴宇), Zhang Li-Li(张丽丽), Zhou Heng-Wei(周恒为), Wei Lai(卫来), and Huang Yi-Neng(黄以能) vgluept . Chin. Phys. B, 2011, 20(2): 026401.
[14] Oxygen-vacancy-related dielectric relaxation and conduction mechanisms in Bi5 TiNbWO15 ceramics
Wang Xiao-Juan(王晓娟), Gong Zhi-Qiang(龚志强), Qian Ya-Feng(钱亚峰), Zhu Jun(朱骏), and Chen Xiao-Bing(陈小兵). Chin. Phys. B, 2007, 16(7): 2131-2135.
No Suggested Reading articles found!