Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 056401    DOI: 10.1088/1674-1056/19/5/056401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Stabilisation analysis of multiple car-following model in traffic flow

Peng Guang-Han(彭光含)
College of Physics and Electronic Science, Hunan University of Arts and Science, Changde 415000, China
Abstract  An improved multiple car-following model is proposed by considering the arbitrary number of preceding cars, which includes both the headway and the velocity difference of multiple preceding cars. The stability condition of the extended model is obtained by using the linear stability theory. The modified Korteweg--de Vries equation is derived to describe the traffic behaviour near the critical point by applying the nonlinear analysis. Traffic flow can be also divided into three regions: stable, metastable and unstable regions. Numerical simulation is accordance with the analytical result for the model. And numerical simulation shows that the stabilisation of traffic is increasing by considering the information of more leading cars and there is unavoidable effect on traffic flow from the multiple leading cars' information.
Keywords:  traffic flow      optimal velocity model      numerical simulation  
Received:  17 September 2009      Revised:  23 October 2009      Accepted manuscript online: 
PACS:  89.40.Bb (Land transportation)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No.~07JJ6106), the Important Project of Scientific Research Foundation of Hunan University of Arts and Science, China (Grant No.~JJZD0902) and the Fund of the 11th Five-year Plan for Key Construction Academic Subject of Hunan Province, China (Grant No.~06GXCD02).

Cite this article: 

Peng Guang-Han(彭光含) Stabilisation analysis of multiple car-following model in traffic flow 2010 Chin. Phys. B 19 056401

[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2] Helbing D 2001 Rev. Mod. Phys. 73 1067
[3] Bando M, Hasebe K, Nakyaama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[4] Li X L, Song T, Kuang H and Dai S Q 2008 Chin. Phys. B 17 3014
[5] Hayakawa H and Nakanishi K 1998 Prog. Theor. Phys. Suppl. 130 57
[6] Nagatani T 1999 Phys. Rev. E 60 6395
[7] Lenz H and Wagner C K 1999 Eur. Phys. J. B 7 331
[8] Ge H X, Dai S Q, Dong L Y and Xue Y 2004 Phys. Rev. E 70 066134
[9] Wagner C K 1998 Physica A 260 218
[10] Nakayama A, Sugiyama Y and Hasebe K 2001 Phys. Rev. E 65 016112
[11] Hasebe K, Nakayama A and Sugiyama Y 2003 Phys. Rev. E 68 026102
[12] Sawada S 2002 Int. J. Mod. Phys. C 13 1
[13] Ge H X, Dai S Q, Xue Y and Dong L Y 2005 Phys. Rev.E 71 066119
[14] Zhu H B and Dai S Q 2008 Physica A 387 3290
[15] Ge H X, Zhu H B and Dai S Q 2006 Eur. Phys. J.B 54 503
[16] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[17] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[18] Xue Y 2003 Acta. Phys. Sin. 52 2750 (in Chinese)
[19] Xue Y, Dong L Y, Yuan Y W and Dai S Q 2002 Acta. Phys. Sin. 51 492 (in Chinese)
[20] Xue Y 2002 Chin. Phys. 11 1128
[21] Tang T Q, Huang H J and Gao Z Y 2005 Phys. Rev. E 72 066124
[22] Wang T, Gao Z Y and Zhao X M 2006 Acta. Phys. Sin. 55 634 (in Chinese)
[23] Li L and Shi P F 2005 Chin. Phys. 14 0576
[24] Zhao X M and Gao Z Y 2005 Eur. Phys. J. B 47 145
[25] Li Z P and Liu Y C 2006 Chin. Phys. 15 1570
[26] Sawada S 2006 Int. J. Mod. Phys. C 17 65
[27] Li Z P, Liu Y C and Liu F Q 2007 Int. J. Mod. Phys. C 18 819
[28] Li Z P, Gong X B and Liu Y C 2006 Commun. Theor. Phys. 46 367
[29] Lei Y and Shi Z K 2008 Chaos, Solitons and Fractals 36 550
[30] Gong H X, Liu H C and Wang B H 2008 Physica A 387 2595
[31] Ge H X 2008 Physica A 360 1
[32] Zhu W X and Liu Y C 2008 J. Shanghai Jiaotong Univ. (Sci.) 13 166
[33] Xie D F, Gao Z Y and Zhao X M 2008 Commun. Comput. Phys. 3 899
[34] Peng G H, Sun D H and He H P 2008 Acta. Phys. Sin. 57 7541 (in Chinese)
[35] Mo Y L, He H D, Xue Y, Shi W and Lu W Z 2008 Chin. Phys. B 17 4446
[36] Tang T Q, Huang H J, Wong S C and Jiang R 2009 Chin. Phys. B 18 975
[37] Komatasu T and Sasa S 1995 Phys. Rev. E 52 5574
[38] Muramatsu M and Nagatani T 1999 Phys. Rev. E 60 180
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[4] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[5] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[6] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[7] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[8] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[9] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[10] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[11] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[12] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[13] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[14] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[15] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
No Suggested Reading articles found!