Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037502    DOI: 10.1088/1674-1056/19/3/037502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Giant magnetocaloric effect in the Gd5Ge2.025Si1.925In0.05 compound

E. Yüzüak, I. Dincer, and Y. Elerman
Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler, Ankara, Turkey
Abstract  The magnetocaloric properties of the Gd5Ge2.025Si1.925In0.05 compound have been studied by x-ray diffraction, magnetic and heat capacity measurements. Powder x-ray diffraction measurement shows that the compound has a dominant phase of monoclinic Gd5Ge2Si2-type structure and a small quantity of Gd5(Ge,Si)3-type phase at room temperature. At about 270 K, this compound shows a first order phase transition. The isothermal magnetic entropy change ($\Delta$ SM) is calculated from the temperature and magnetic field dependences of the magnetization and the temperature dependence of MCE in terms of adiabatic temperature change ($\Delta$ Tad) is calculated from the isothermal magnetic entropy change and the temperature variation in zero-field heat-capacity data. The maximum $\Delta$ SM is -13.6 J$\cdot$kg-1$\cdot$K-1 and maximum $\Delta$ Tad is 13 K for the magnetic field change of 0--5 T. The Debye temperature ($\theta$D) of this compound is 149 K and the value of DOS at the Fermi level is 1.6 states/eV.atom from the low temperature zero-field heat-capacity data. A considerable isothermal magnetic entropy change and adiabatic temperature change under a field change of 0--5 T jointly make the Gd5Ge2.025Si1.925In0.05 compound an attractive candidate for a magnetic refrigerant.
Keywords:  magnetic properties      magnetocaloric effect      isothermal magnetic entropy change      adiabatic temperature change  
Received:  14 April 2009      Revised:  10 July 2009      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  61.66.Dk (Alloys )  
  71.20.Lp (Intermetallic compounds)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  

Cite this article: 

E. Yüzüak, I. Dincer, and Y. Elerman Giant magnetocaloric effect in the Gd5Ge2.025Si1.925In0.05 compound 2010 Chin. Phys. B 19 037502

[1] Warburg E 1881 Ann. Phys. 13 141
[2] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[3] Pecharsky V K and Gschneidner Jr K A 1997 Appl. Phys. Lett. 703299
[4] Pecharsky V K and Gschneidner Jr K A 1997 J. Magn. Magn. Mater. 167 L179
[5] Pecharsky A O, Pecharsky V K and Gschneidner Jr K A 2000 J. Alloys Comp. 338 126
[6] Pecharsky V K and Gschneidner Jr K A 1997 J. Alloys Comp. 260 98
[7] Pecharsky V K, Pecharsky A O and Gschneidner Jr K A 2002 J. Alloys Comp. 344 362
[8] Pecharsky A O, Pecharsky V K and Gschneidner Jr K A 2003 J. Appl. Phys. 93 4722
[9] Aksoy S, Yucel A, Elerman Y, Krenke T, Acet M, Moya X and Manosa L 2008 J. Alloys Comp. 460 94
[10] Zhung Y H, Li J Q, Huang W D, Sun W A and Ao W Q 2006 J. Alloys Comp. 421 49
[11] Li J Q, Sun W A, Jian Y X, Zhung Y H, Huang W D and Liang J K 2006J. Appl. Phys. 100 073904
[12] Wu W, Tsokol A O, Gschneidner Jr K A and Sampaio J A 2005 J. Alloys Comp. 403 118
[13] Yadin Y and Goldschmidt 1985 Phys. Rev. B 32 264
[14] Yücel A, Elerman Y and Aksoy S 2006 J. Alloys and Compounds 420 182
[15] Gschneidner Jr K A and Pecharsky V K 1999 J. Appl. Phys. 85 5365
[16] Pecharsky V K and Gschneidner Jr K A In: Wesrbrook J H and Fleisher R L (Eds.) 2002 Intermetallic Compounds Principles and Practice vol. 3: (Chichester, UK: Progress, Wiley and Sons)
[17] Pecharsky V K and Gschneidner Jr K A 1999 J. Appl. Phys. 86 565
[18] Sharma V K, Chattopadhyay M K, Kumar Ravi, Ganguli Tapas, Tiwari Pragya and Roy S B2007 J. Phys.: Condens. Matter 19 496207
[19] Dong Q Y, Shen B G, Chen J, Shen J, Wang F, Zhang H F and Sun J R 2009J. Appl. Phys. 105 053908
[20] Gschneidner Jr K A, Pecharsky Jr V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[21] Paudyal D, Percharsky V K, Gschneidner Jr K A and Harmon N 2006Phys. Rev. B 73 144406
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[8] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[9] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[10] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[11] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[12] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[13] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[14] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!