Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037503    DOI: 10.1088/1674-1056/19/3/037503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal relaxation of exchange bias field in an exchange coupled CoFe/IrMn bilayer

Qi Xian-Jin(祁先进), Wang Yin-Gang(王寅岗), Zhou Guang-Hong(周广宏), Li Zi-Quan(李子全), and Guo Min(郭敏)
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  This paper reports that a CoFe/IrMn bilayer was deposited by high vacuum magnetron sputtering on silicon wafer substrate; the thermal relaxation of the CoFe/IrMn bilayer is investigated by means of holding the film in a negative saturation field at various temperatures. The exchange bias decreases with increasing period of time while holding the film in a negative saturation field at a given temperature. Increasing the temperature accelerates the decrease of exchange field. The results can be explained by the quantitative model of the nucleation and growth of antiferromagnetic domains suggested by Xi H W et al. [2007 Phys. Rev. B 75 014434], and it is believed that two energy barriers exist in the investigated temperature range.
Keywords:  thermal relaxation      exchange bias      energy barrier      CoFe/IrMn bilayer  
Received:  04 May 2009      Revised:  10 June 2009      Accepted manuscript online: 
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.50.Ee (Antiferromagnetics)  
  75.60.Ch (Domain walls and domain structure)  
  68.55.A- (Nucleation and growth)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~50671048).

Cite this article: 

Qi Xian-Jin(祁先进), Wang Yin-Gang(王寅岗), Zhou Guang-Hong(周广宏), Li Zi-Quan(李子全), and Guo Min(郭敏) Thermal relaxation of exchange bias field in an exchange coupled CoFe/IrMn bilayer 2010 Chin. Phys. B 19 037503

[1] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
[2] Han D, Stokes S, Liu D, Liu Y Z, Jia L X, Ding J and Wang H 2003 J. Appl. Phys. 93 7316
[3] Zheng Y K, Wu Y H, Li K B, Qiu J J, Han G C, An L H, Luo P and Guo Z B2004 IEEE Trans. Magn . 40 2634
[4] Guedes A, Mendes M J, Freitas P P and Martins J L 2006 J. Appl. Phys.99 08B703
[5] Hughes T, O'Grady K, Laidler H and Chantrell R W 2001 J. Magn. Magn. Mater. 235 329
[6] Wang Y G and Petford-Long A K 2002 J. Appl. Phys. 92 6699
[7] van der Heijden P A A, Maas T F M M, de Jonge W J M, Kools J C S,Roozeboom F and van der Zaag P J 1998 Appl. Phys. Lett. 72 492
[8] Xi H W, Franzen S, Mao S and White R M 2007 Phys. Rev. B 75 014434
[9] Zhou G H, Wang Y G and Qi X J 2009 Chin. Phys. Lett. 26 037501
[10] Zhou G H, Wang Y G, Qi X J, Li Z Q and Chen J K 2009 Chin. Phys. B 18 790
[11] Nishioka K 1999 J. Appl. Phys. 86 6305
[12] Teng J, Cai J W, Xiong X T, Lai W Y and Zhu F W 2004 Acta Phys. Sin.53 272(in Chinese)
[13] Du J, Yang D Z, Bai X J, Wu X S, Hu A, Zhou S M and Sun L 2006 J. Appl. Phys. 99 08C103
[14] Chung S H, Hoffmann A and Grimsditch M 2005 Phys. Rev. B 71 214430
[15] Zhao T, Zhang K and Fujiwara H 2002 J. Appl. Phys. 91 6890
[16] Stamps R L 2000 Phys. Rev. B 61 12174
[17] Kolmogorov A N 1937 Izv. Akad. Nauk SSSR Ser. Mat 3 355
[18] Avrami M 1940 J. Chem. Phys. 8 212
[19] Hughes T, Laidler H and O'Grady K 2001 J. Appl. Phys. 89 5585
[20] Ryu K S, Shin S C, Akinaga H and Manago T 2006 Appl. Phys. Lett. 88 122509
[1] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[2] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[3] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[4] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[5] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[6] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[7] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[8] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
[9] Analysis of meniscus beneath metastable droplets and wetting transition on micro/nano textured surfaces
Yanjie Li(李艳杰), Xiangqin Li(李香琴), Tianqing Liu(刘天庆), Weiguo Song(宋伟国). Chin. Phys. B, 2018, 27(8): 086801.
[10] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[11] Dissociation of H2 on Mg-coated B12C6N6
Li Ma(马丽), Xue-Ling Jin(金雪玲), Hui-Hui Yang(杨慧慧), Xiao-Xia Wang(王小霞), Ning Du(杜宁), Hong-Shan Chen(陈宏善). Chin. Phys. B, 2017, 26(6): 068801.
[12] Combined multi-level quantum mechanics theories and molecular mechanics study of water-induced transition state of OH-+CO2 reaction in aqueous solution
Chen Li(李琛), Meixing Niu(牛美兴), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友). Chin. Phys. B, 2017, 26(10): 103401.
[13] Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon
Qingxue Huang(黄庆学), Fenghua Chen(陈峰华), Mingang Zhang(张敏刚), Xiaohong Xu(许小红). Chin. Phys. B, 2016, 25(5): 057305.
[14] Size-dependent exchange bias in single phase Mn3O4 nanoparticles
Song-Wei Wang(王松伟), Xin Zhang(张鑫), Rong Yao(姚蓉), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2016, 25(11): 117502.
[15] Model of hybrid interfacial domain wall in ferromagnetic/antiferromagnetic bilayers
Zhang Wen (章文), Zhai Ya (翟亚), Lu Mu (鹿牧), You Biao (游彪), Zhai Hong-Ru (翟宏如), Caroline G Morgan. Chin. Phys. B, 2015, 24(4): 047502.
No Suggested Reading articles found!