Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 024214    DOI: 10.1088/1674-1056/19/2/024214
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Near-stoichiometric Ti:LiNbO3 strip waveguide with varied substrate refractive index in waveguide layer

Zhang De-Long(张德龙)a)b)† , Wu Chang(吴嫦)a), and Pun Edwin Yue-Bun(潘裕斌)b)
a School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China, and Key Laboratory of Optoelectronics Information Science and Technology, Ministry of Education, Tianjin 300072, China; b Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
Abstract  We report the near-stoichiometric Ti:LiNbO3 strip waveguides fabricated by vapour transport equilibration (VTE) at 1060 $^{\circ}$C for 12 h and co-diffusion of 4--8 $\mu$m wide, 115-nm thick Ti-strips. Optical studies show that these waveguides are monomode at 1.5 $\mu$m and have losses of 1.3 and 1.1 dB/cm for the TM and TE modes, respectively. In the waveguide width/depth direction, the mode field follows a Gauss/Hermite--Gauss profile. A secondary ion mass spectrometry study reveals that the Ti profile follows a sum of two error functions along the width direction and a complementary error function in the depth direction. Micro-Raman analysis shows that the Li-composition in the depth direction also follows a complementary error function. The mean Li/Nb ratio in the waveguide layer is about 0.98. The inhomogeneous Li-composition profile results in a varied substrate index in the guiding layer, and the refractive index profile in the guiding layer is given.
Keywords:  near-stoichiometric Ti:LiNbO3 strip waveguide      varied substrate refractive index      Li-composition profile      2D refractive index profile  
Received:  18 November 2008      Revised:  10 September 2009      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.30.Hv (Other nonmetallic inorganics)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50872089 and 60577012) and the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. CityU 1194/07).

Cite this article: 

Zhang De-Long(张德龙), Wu Chang(吴嫦), and Pun Edwin Yue-Bun(潘裕斌) Near-stoichiometric Ti:LiNbO3 strip waveguide with varied substrate refractive index in waveguide layer 2010 Chin. Phys. B 19 024214

[1] Jermann F, Simon D M and Kratzig E 1995 J. Opt. Soc. Am. B 12 2066
[2] Zhang D L, Wong W H and Pun E Y B 2004 Appl. Phys. Lett. 85 3002
[3] Schlarb U and Betzler K 1993 Phys. Rev. B 48 15613
[4] Jundt D H, Fejer M M and Byer R L 1990 IEEE J. Quantum Electron. 26 135
[5] Malovichko G I, Grachev V G, Kokanyan E P, Schirmer O F, Betzler K,Gather B, Jermann F, Klauer S, Schlarb U and Wohlecke M 1993 Appl. Phys. A : Solids & Surf. 56 103
[6] Baumann I, Brinkmann R, Dinand M, Sohler W and Westenh?fer S 1996 IEEE J. Quantum Electron. 32 1695
[7] Nakamura M, Takekawa S, Kurimura S, Kitamura K and Nakajima H 2004 J. Crystal Growth 2 64 339
[8] Hellwig A, Suche H, Schor R and Sohler W `` Titanium-indiffusedWaveguides in Magnesium Oxide Doped Stoichiometric Lithium Niobate (MgO:SLN),'' 12th European Conference on Integrated Optics(ECIO'05),Grenoble, France, ThB2-5, 2005
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[3] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[4] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[5] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[6] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[7] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[8] Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode
Tao Ma(马涛), Yong-Sheng Tian(田永生), Shao-Hui Liu(刘少晖), Jia-He Ma(马家赫), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(11): 114208.
[9] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[10] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[11] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[12] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[13] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[14] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[15] High common mode rejection ratio InP 90° optical hybrid in ultra-broadband at 60 nm with deep-rigded waveguide based on ×4 MMI coupler
Zi-Qing Lu(陆子晴), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Feng Xiao(肖峰), Fan Xiao(肖帆). Chin. Phys. B, 2020, 29(5): 054206.
No Suggested Reading articles found!