Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 024601    DOI: 10.1088/1674-1056/19/2/024601
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Simulation of random mixed packing of different density particles

Li Yuan-Yuan(李元元)a), Xia Wei(夏伟) a),Zhou Zhao-Yao(周照耀)a), He Ke-Jing(何克晶)b), Zhong Wen-Zhen(钟文镇)a), and Wu Yuan-Biao(吴苑标) a)
a School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China;  School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China
Abstract  This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The initial state is homogeneous, but the final packing state is inhomogeneous. The segregation phenomenon (inhomogeneous distribution) is also observed. In the final state, the top layers are composed of mostly light particles. The several layers beneath the top contain more heavy particles than light particles. At the bottom, they also contain more heavy particles than light particles. Furthermore, at both the top and the bottom, particle clustering is observed. The current study also analyses the cause of this inhomogeneity in detail. The main cause of this phenomenon is the velocity difference after collision of these two types of particles induced by the density difference. The present study reveals that even if particles were perfectly mixed, the packing process would lead to the final inhomogeneous mixture. It suggests that special treatment may be required to get the true homogeneous packing.
Keywords:  mixed packing      different densities      granular particle      discrete element method simulation  
Received:  22 February 2009      Revised:  07 April 2009      Accepted manuscript online: 
PACS:  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  89.20.Kk (Engineering)  
Fund: Project supported by the State Key Development Program for Basic Research of China (973 Program) (Grant No. 2007CB616905), the National High Technology Research and Development Program of China (863 Program) (Grant No. 2007AA03Z112), the National Natural Science Foundation of China (Grant No. 10805019), and the Natural Science Foundation of Guangdong Province of China (Grant No. 8451064101000083).

Cite this article: 

Li Yuan-Yuan(李元元), Xia Wei(夏伟),Zhou Zhao-Yao(周照耀), He Ke-Jing(何克晶), Zhong Wen-Zhen(钟文镇), and Wu Yuan-Biao(吴苑标) Simulation of random mixed packing of different density particles 2010 Chin. Phys. B 19 024601

[1] Scott G D and Kilgour D M 1969 J. Phys. D:A ppl. Phys. 2 863
[2] Stroeven P and Stroeven M 1999 Cement and ConcreteResearch 29 1201
[3] He K J, Dong S B and Zhou Z Y 2007 Phys.Rev. E 75036710
[4] Fiske T J, Railkar S B andKalyon D M 1994 Powder Technology 81 57
[5] Shi Q,Sun G, Hou M and Lu K 2007 Phys. Rev. E 75061302
[6] Yang S C 2006 Powder Technology 1 64 65
[7] CundallP A and Strack O D L 1979 Géotechnique 29 47
[8] Zhang Z P,Liu L F, Yuan Y D and Yu A B 2001 Powder Technology 116 23
[9] Walton O R and Braun R L 1986 Journal ofRheology 30 949
[10] Zhong W Z, He K J, Zhou Z Y, Xia Wand Li Y Y 2009 Acta Phys. Sin. 58 S21 (in Chinese)
[11] Zhong W Z, He K J, Zhou Z Y, Xia W and Li Y Y 2009 Acta Phys.Sin. 58 5155 (in Chinese)
[1] Impact mechanism of gas temperature in metal powder production via gas atomization
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Bo-Rui Du(杜博睿), Shi-Yuan Shen(申世远), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 054702.
[2] Process modeling gas atomization of close-coupled ring-hole nozzle for 316L stainless steel powder production
Peng Wang(汪鹏), Jing Li(李静), Hen-San Liu(刘恒三), Xin Wang(王欣), Bo-Rui Du(杜博睿), Ping Gan(甘萍), Shi-Yuan Shen(申世远), Bin Fan(范斌), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 057502.
[3] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[4] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[5] Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion
Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军). Chin. Phys. B, 2020, 29(4): 048101.
[6] Structural and dielectric properties of giant dielectric Na1/2Sm1/2Cu3Ti4O12 ceramics prepared by reactive sintering methods
H Mahfoz Kotb. Chin. Phys. B, 2019, 28(9): 098202.
[7] Properties of negative thermal expansion β-eucryptite ceramics prepared by spark plasma sintering
Li-Min Zhao(赵利敏), Yong-Guang Cheng(程永光), Hao-Shan Hao(郝好山), Jiao Wang(王娇), Shao-Hui Liu(刘少辉), Bao-Sen Zhang(张宝森). Chin. Phys. B, 2018, 27(9): 096501.
[8] Polycrystalline cubic boron nitride prepared with cubic-hexagonal boron nitride under high pressure and high temperature
Ming Yang(杨鸣), Zi-Li Kou(寇自力), Teng Liu(刘腾), Jing-Rui Lu(卢景瑞), Fang-Ming Liu(刘方明), Yin-Juan Liu(刘银娟), Lei Qi(戚磊), Wei Ding(丁未), Hong-Xia Gong(龚红霞), Xiao-Lin Ni(倪小林), Duan-Wei He(贺端威). Chin. Phys. B, 2018, 27(5): 056105.
[9] Optimize the thermoelectric performance of CdO ceramics by doping Zn
Xin-Yu Zha(查欣雨), Lin-Jie Gao(高琳洁), Hong-Chang Bai(白洪昌), Jiang-Long Wang(王江龙), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2017, 26(10): 107202.
[10] Consecutive induction melting of nickel-based superalloy in electrode induction gas atomization
Shan Feng(峰山), Min Xia(夏敏), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(6): 060201.
[11] High thermal stability of diamond-cBN-B4C-Si composites
Hong-Sheng Jia(贾洪声), Pin-Wen Zhu(朱品文), Hao Ye(叶灏), Bin Zuo(左斌), Yuan-Long E(鄂元龙), Shi-Chong Xu(徐仕翀), Ji Li(李季), Hai-Bo Li(李海波), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(1): 018102.
[12] Hot corrosion behavior of the spray-formed nickel-based superalloy
Min Xia(夏敏), Tian-Fu Gu(谷天赋), Chong-Lin Jia(贾崇林), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2016, 25(12): 128103.
[13] Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering
H Mahfoz Kotb, Mohamad M Ahmad. Chin. Phys. B, 2016, 25(12): 128201.
[14] Spray forming and mechanical properties of a new type powder metallurgy superalloy
Jia Chong-Lin (贾崇林), Ge Chang-Chun (葛昌纯), Xia Min (夏敏), Gu Tian-Fu (谷天赋). Chin. Phys. B, 2015, 24(11): 118107.
[15] Effect of milling atmosphere on structural and magnetic properties of Ni–Zn ferrite nanocrystalline
Abdollah Hajalilou, Mansor Hashim, Reza Ebrahimi-Kahrizsangi, Mohamad Taghi Masoudi. Chin. Phys. B, 2015, 24(4): 048102.
No Suggested Reading articles found!