Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017307    DOI: 10.1088/1674-1056/19/1/017307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of surface treatment of GaN based light emitting diode wafers on the leakage current of light emitting diode devices

Wang Liang-Ji(王良吉)a), Zhang Shu-Ming(张书明)a)†, Zhu Ji-Hong(朱继红)a), Zhu Jian-Jun(朱建军)a), Zhao De-Gang(赵德刚)a), Liu Zong-Shun(刘宗顺)a), Jiang De-Sheng(江德生)a), Wang Yu-Tian(王玉田) a) , and Yang Hui(杨辉)a)b)
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, China
Abstract  To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current--voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes.
Keywords:  GaN      light emitting diode      surface treatment      leakage current  
Received:  30 April 2009      Revised:  25 May 2009      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  73.40.Ns (Metal-nonmetal contacts)  
  81.65.-b (Surface treatments)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60776047, 60836003, 60476021 and 60576003).

Cite this article: 

Wang Liang-Ji(王良吉), Zhang Shu-Ming(张书明), Zhu Ji-Hong(朱继红), Zhu Jian-Jun(朱建军), Zhao De-Gang(赵德刚), Liu Zong-Shun(刘宗顺), Jiang De-Sheng(江德生), Wang Yu-Tian(王玉田) , and Yang Hui(杨辉) Effect of surface treatment of GaN based light emitting diode wafers on the leakage current of light emitting diode devices 2010 Chin. Phys. B 19 017307

[1] Akasaki I and Amano H 2006 Jpn. J. Appl. Phys. 45 9001
[2] Zhang J M, Zou D S, Xu C, Zhu Y X, Liang T, Da X L and Shen G D 2007 Chin. Phys. 16 1135
[3] Chong W C and Lau K M 2007 Phys. Stat. Sol. (c). 4 2646
[4] Meneghini M, Trevisanello L R, Meneghesso G and Zanoni E 2007 IEEE Transactions on Electron Devices 54 3245
[5] Qin Z X, Chen Z Z, Zhang H X, Ding X M, Hu X D, Yu T J and Zhang G Y 2003 Solid-State Electronics 47 1741
[6] Smith L L, King S W, Nemanich R J and Davis R F 1996 J. Electronic Materials. 25 805
[7] Cho H K, Lee J Y, Yang G M and Kim C S 2001 Appl. Phys. Lett. 79 215
[8] Ayers J E 1994 J. Crystal Growth. 135 71
[9] Chen J, Wang J F, Wang H, Zhu J J, Zhang S M, Zhao D G, Jiang D S, Yang H, Jahn U and Ploog K H 2006 Semiconductor Science and Technology 21 1229
[10] Kioseoglou J, Dimitrakopulos G P, Komninou P, Karakostas T and Aifantis E C 2008 J. Phys. D: Appl. Phys. 41 035408
[11] Hsu C Y, Lan W H and Wu Y S 2003 Appl. Phys. Lett. 83 2447
[12] Cao X A, Teetsov J A, Shahedipour-Sandvik F and Arthur S D 2004 J. Crystal Growth 264 172
[13] Lee S W, Oh D C, Goto H, Ha J S, Lee H J, Hanada T, Cho M W, Hong S K, Lee H Y, Cho S R, Choi J W, Jang J H, Shin J E, Lee J S and Yao T 2007 Phys.
Stat. Sol. (c) 4 37
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
No Suggested Reading articles found!