Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010314    DOI: 10.1088/1674-1056/19/1/010314
GENERAL Prev   Next  

The decoherence of the triangular and Coulomb bound potential quantum dot qubit

Li Hong-Juan(李红娟), Sun Jia-Kui(孙家奎), and Xiao Jing-Lin(肖景林)
College of Physics and Electromechanics, Inner Mongolia National University, Tongliao 028043, China
Abstract  We study the eigenenergies and eigenfunctions of the ground and first-excited states of an electron which is strongly coupled to an LO-phonon in a quantum dot with a triangular bound potential and Coulomb bound potential by using the Pekar variational method. This system may be used as a two-level qubit. Phonon spontaneous emission causes the decoherence of the qubit. Numerical calculations are performed on the decoherence rate as a function of the polar angle, the Coulomb binding parameter, the coupling strength, the confinement length of the quantum dot and the dispersion coefficient.
Keywords:  quantum dot      triangular bound potential      Coulomb bound potential      decoherence  
Received:  06 May 2009      Revised:  05 July 2009      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10347004) and the Research Science Project for the Colleges and Universities of Inner Mongolia Autonomous Region (Grant No. NJzy08085).

Cite this article: 

Li Hong-Juan(李红娟), Sun Jia-Kui(孙家奎), and Xiao Jing-Lin(肖景林) The decoherence of the triangular and Coulomb bound potential quantum dot qubit 2010 Chin. Phys. B 19 010314

[1] Sikorski C and Merkt U 1989 Phys. Rev. Lett. 62 2164
[2] Lorke A, Kotthaus J P and Ploog K 1990 Phys. Rev. Lett. 64 2559
[3] Normura S and Kobayashi T 1992 Phys. Rev. B 45 1305
[4] Li S S and Xia J B 2007 Chin. Phys. 16 0001
[5] Li S S and Xia J B 2006 J. Appl. Phys. 100 083714
[6] Li S S and Xia J B 2006 Chin. Phys. Lett. 23 1896
[7] Chi F and Li S S 2006 J. Appl. Phys. 99 043705
[8] Fedichkin L and Fedorov A 2004 Phys. Rev. A 69 032311
[9] Li S S, Xia J B, Liu J L, Yang F H, Niu Z C, Feng S L and Zheng H Z 2001 J. Appl. Phys. 90 6151
[10] Li S S, Long G L, Bai F S, Feng S L and Zheng H Z 2001 Pro. Natl. Acad. Sci. USA 98 11847
[11] Ezaki T, Mori N and Hamaguchi C 1998 Phys. Rev. B 56 6428
[12] Barnes J P and Warren W S 1999 Phys. Rev. A 60 4363
[13] Tolkunov D and Privman V 2004 Phys. Rev. A 69 062309
[14] Grodecka A and Machnikowski P 2006 Phys. Rev. B 73 125306
[15] Lovric M, Krojanski H G and Suter D 2007 Phys. Rev. A 75 042305
[16] Wang Z W, Xiao J L and Li W P 2008 Physica B 403 522
[17] Wang Z W, Li W P, Yin J W and Xiao J L 2008 Commun. Theor. Phys. 49 311
[18] Xu X B, Liu J M and Yu P F 2008 Chin. Phys. B 17 456
[19] Li G X,Wu S P and Zhang L J 2008 Chin. Phys. B 17 185
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!