|
|
Quantum entanglement and control in a capacitively coupled charge qubit circuit |
Liang Bao-Long(梁宝龙)a)†, Wang Ji-Suo(王继锁)a)b), Meng Xiang-Guo(孟祥国)a), and Su Jie(苏杰)a) |
a School of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059, China; b College of Physics and Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract The macroscopic quantum entanglement in capacitively coupled SQUID (superconducting quantum interference device)-based charge qubits is investigated theoretically. The entanglement characteristic is discussed by employing the quantum Rabi oscillations and the concurrence. An interesting conclusion is obtained, i.e., the magnetic fluxes $\varPhi_{x1}$ and $\varPhi_{x2}$ through the superconducting loops can adjust the entanglement degree between the qubits.
|
Received: 13 February 2009
Revised: 11 April 2009
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
85.25.Cp
|
(Josephson devices)
|
|
85.25.Dq
|
(Superconducting quantum interference devices (SQUIDs))
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant No. 10574060), the
Natural Science Foundation of Shandong Province, China (Grant No.
Y2008A23), and Project of Shandong Province Higher Educational Science and Technology Program (Grant No.~J09LA07). |
Cite this article:
Liang Bao-Long(梁宝龙), Wang Ji-Suo(王继锁), Meng Xiang-Guo(孟祥国), and Su Jie(苏杰) Quantum entanglement and control in a capacitively coupled charge qubit circuit 2010 Chin. Phys. B 19 010315
|
[1] |
Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L S, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
|
[2] |
Makhlin Y, Sch?n G and Shnirman A 1999 Nature 398 305
|
[3] |
Vandersypen L M K, Steffen M, Breyta G, Yannoni C S, Sherwood M H and Chuang I L 2001 Nature 414 883
|
[4] |
Gulde S, Riebe M, Lancaster G P T, Becher C, Eschner J, H?% fner H, Schmidt-Kaler F, Chuang I L and Blatt R 2003 Nature 421 48
|
[5] |
Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble H J 1995 Phys. Rev. Lett. 75 4710
|
[6] |
Di Vincenzo D P 1995 Science 269 225
|
[7] |
Lloyd S 1994 Science 263 695[ Landauer R 1988 Nature 335 779
|
[8] |
Vourdas A 1994 Phys. Rev. B 49 12040[Vourdas A 1996 J. Mod. Opt. 43 2105[ Liang B L, Wang J S and Fan H Y 2008 Chin. Phys. B 17 0697[ Liang B L and Wang J S 2007 Chin. Phys. 16 163097
|
[9] |
Makhlin Y, Sch?n G and Shnirman A 2001 Rev. Mod. Phys. 73 357
|
[10] |
Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
|
[11] |
Deppe F, Mariantoni M, Menzel E P, Saito S, Kakuyanagi K, Tanaka H, Meno T, Semba K, Takayanagi H and Gross R 2007 Phys. Rev. B 76 214503
|
[12] |
van der Ploeg S H W, Izmalkov A, van den Brink A M, Hü% bner U, Grajcar M, Il'ichev E, Meyer H G and Zagoskin A M 2007 % Phys. Rev. Lett. 98 057004
|
[13] |
Bouchiat V, Vion D, Joyez P, Esteve D and Devoret M H 1999 J. Supercond. 12 789
|
[14] |
Shirman A, Sch?n G and Hermon Z 1997 Phys. Rev. Lett. 79 2371
|
[15] |
Berkley A J, Xu H, Gubrud M A, Ramos R C, Strauch F W, Johnson P R, Anderson J R, Dragt A J, Lobb C J and Wellstood F C 2003 Science 300 1548
|
[16] |
Wei L F, Liu Y X and Nori F 2006 Phys. Rev. Lett. 96 246803
|
[17] |
Feynman R P, Leighton R B and Sands M 1965 The Feynman Lectures on Physics (Addison-Wesley) Vol 3
|
[18] |
Dirac P A M 1958 The Principle of Quantum Mechanics (Oxford: Oxford University Press) Vol 4
|
[19] |
You J Q, Lam C H and Zheng H Z 2001 Phys. Rev. B 63 180501
|
[20] |
Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill)
|
[21] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[22] |
Kim M D and Cho S Y 2007 Phys. Rev. B 75 134514
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|