Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(11): 4184-4192    DOI: 10.1088/1674-1056/17/11/038
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Retrieval algorithm of quantitative analysis of passive Fourier transform infrared (FTRD) remote sensing measurements of chemical gas cloud from measuring the transmissivity by passive remote Fourier transform infrared

Liu Zhi-Ming (刘志明), Liu Wen-Qing (刘文清), Gao Min-Guang (高闽光), Tong Jing-Jing (童晶晶), Zhang Tian-Shu (张天舒), Xu Liang (徐 亮), Wei Xiu-Li (魏秀丽)
Key Laboratory of Environmental Optics & Technology, Chinese Academy of Sciences, Hefei 230031, China; Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer--Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg--Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.
Keywords:  passive remote measurement      Fourier transform infrared (FTIR)      gas cloud sensing      concentration retrieval  
Received:  08 April 2008      Revised:  16 May 2008      Accepted manuscript online: 
PACS:  33.20.Ea (Infrared spectra)  
  51.70.+f (Optical and dielectric properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 083H311501) and the National High Technology Research and Development Program of China (Grant No 073H3f1514).

Cite this article: 

Liu Zhi-Ming (刘志明), Liu Wen-Qing (刘文清), Gao Min-Guang (高闽光), Tong Jing-Jing (童晶晶), Zhang Tian-Shu (张天舒), Xu Liang (徐 亮), Wei Xiu-Li (魏秀丽) Retrieval algorithm of quantitative analysis of passive Fourier transform infrared (FTRD) remote sensing measurements of chemical gas cloud from measuring the transmissivity by passive remote Fourier transform infrared 2008 Chin. Phys. B 17 4184

[1] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[2] Wide dynamic detection range of methane gas based on enhanced cavity absorption spectroscopy
Yu Wang(汪玉), Bo-Kun Ding(丁伯坤), Kun-Yang Wang(王坤阳), Jiao-Xu Mei(梅教旭), Ze-Lin Han(韩泽林), Tu Tan(谈图), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2022, 31(4): 040705.
[3] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[4] A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment
Kun-Yang Wang(王坤阳), Jie Shao(邵杰), Li-Gang Shao(邵李刚), Jia-Jin Chen(陈家金), Gui-Shi Wang(王贵师), Kun Liu(刘琨), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2021, 30(5): 054203.
[5] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[6] Discontinuous transition between Zundel and Eigen for H5O2+
Endong Wang(王恩栋), Beien Zhu(朱倍恩), Yi Gao(高嶷). Chin. Phys. B, 2020, 29(8): 083101.
[7] Hydrogen sulphide detection using near-infrared diode laser and compact dense-pattern multipass cell
Xing Tian(田兴), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Kun Liu(刘锟), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2019, 28(6): 063301.
[8] Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission
Ru-Wen Wang(王汝雯), Pin-Hua Xie(谢品华), Jin Xu(徐晋), Ang Li(李昂). Chin. Phys. B, 2019, 28(1): 013301.
[9] Temperature dependence of line parameters of 12C16O2 near 2.004 μm studied by tunable diode laser spectroscopy
Hongliang Ma(马宏亮), Mingguo Sun(孙明国), Shenlong Zha(査申龙), Qiang Liu(刘强), Zhensong Cao(曹振松), Yinbo Huang(黄印博), Zhu Zhu(朱柱), Ruizhong Rao(饶瑞中). Chin. Phys. B, 2018, 27(2): 023301.
[10] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[11] Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6
Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云). Chin. Phys. B, 2016, 25(6): 063102.
[12] Spectral distortion of dual-comb spectrometry due to repetition rate fluctuation
Hong-Lei Yang(杨宏雷), Hao-Yun Wei(尉昊赟), Yan Li(李岩). Chin. Phys. B, 2016, 25(4): 044207.
[13] Electric dipole moment function and line intensities for the ground state of carbon monxide
Chen Hua-Jun (陈华君), Wu Jie (吴杰), Liu Hao (刘浩), Cheng Xin-Lu (程新路). Chin. Phys. B, 2015, 24(8): 083102.
[14] Optical determination of the Boltzmann constant
Cheng Cun-Feng (程存峰), Sun Y. R. (孙羽), Hu Shui-Ming (胡水明). Chin. Phys. B, 2015, 24(5): 053301.
[15] Infrared diode laser spectroscopy of O2–N2O van der Waals complex in the ν1 symmetric stretch region of N2O
Li Song (李松), Zheng Rui (郑锐), Duan Chuan-Xi (段传喜). Chin. Phys. B, 2014, 23(12): 123301.
No Suggested Reading articles found!