Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 023301    DOI: 10.1088/1674-1056/27/2/023301

Temperature dependence of line parameters of 12C16O2 near 2.004 μm studied by tunable diode laser spectroscopy

Hongliang Ma(马宏亮)1,2, Mingguo Sun(孙明国)1, Shenlong Zha(査申龙)2, Qiang Liu(刘强)1, Zhensong Cao(曹振松)1, Yinbo Huang(黄印博)1, Zhu Zhu(朱柱)2, Ruizhong Rao(饶瑞中)1
1. Key Laboratory of Atmospheric Optics, Chinese Academy Sciences, Hefei 230031, China;
2. Anqing Normal University, Anqing 246133, China

The absorption spectrum of carbon dioxide at 2.004 μm has been recorded at sample temperatures between 218.0 K and room temperature, by using a high-resolution tunable diode laser absorption spectrometer (TDLAS) combined with a temperature controlled cryogenically cooled absorption cell. The self-, N2-, and air-broadening coefficients for nine transitions of 12C16O2 belonging to the 20012 ← 00001 band in the 4987 cm-1-4998 cm-1 region have been measured at different temperatures. From these measurements, we have further determined the temperature dependence exponents of the pressure-broadening coefficients. To the best of our knowledge, the temperature dependence parameters of the collisional broadening coefficients are reported experimentally for the first time for these nine transitions. The measured halfwidth coefficients and the air temperature dependence exponents of these transitions are compared with the available values reported in the literature and HITRAN 2012 database. Agreements and discrepancies are also discussed.

Keywords:  carbon dioxide      absorption spectroscopy      temperature-dependent exponent      collisional broadening coefficient  
Received:  24 October 2017      Revised:  28 November 2017      Accepted manuscript online: 
PACS:  33.20.-t (Molecular spectra)  
  33.20.Ea (Infrared spectra)  

Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 41205021 and 61701006), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015264), and the Scientific Research Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2015A234).

Corresponding Authors:  Zhensong Cao     E-mail:
About author:  33.20.-t; 33.20.Ea

Cite this article: 

Hongliang Ma(马宏亮), Mingguo Sun(孙明国), Shenlong Zha(査申龙), Qiang Liu(刘强), Zhensong Cao(曹振松), Yinbo Huang(黄印博), Zhu Zhu(朱柱), Ruizhong Rao(饶瑞中) Temperature dependence of line parameters of 12C16O2 near 2.004 μm studied by tunable diode laser spectroscopy 2018 Chin. Phys. B 27 023301

[1] IPCC. Climate Change 2007:the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change; 2007
[2] Rothman L S, Jacquemart D, Barbe A, et al. 2005 J. Quantum Spectrosc. Radiat. Transfer 96 139
[3] Durry G, Amarouche N, Zéninari V, Parvitte B, Lebarbu T and Ovarlez J 2004 Spectrochim. Acta A 60 3371
[4] Pouchet I, Zéninari V, Parvitte B and Durry G 2004 J. Quantum Spectrosc. Radiat. Transfer 83 619
[5] Dufour E, Bréon F M and Peylin P 2004 J. Geophys. Res. 109 D09304
[6] Tolton B T and Plouffe D 2001 Appl. Opt. 40 1305
[7] Kuang Z, Margolis J, Toon G, Crisp D and Yung Y 2002 Geophys. Res. Lett. 29 1716
[8] Inoue G, Yokota T, Oguma H, Higurashi A, Morino I and Aoki T 2004 AGU 2004 fall meeting, December 13-17, 2004 San Francisco, California, USA
[9] Valero F P J, Suárez C B and Boese R W 1979 J. Quantum Spectrosc. Radiat. Transfer 22 93
[10] Suárez C B and Valero F P J 1990 J. Quantum Spectrosc. Radiat. Transfer 43 327
[11] Joly L, Marnas F, Gibert F, Bruneau D, Grouiez B, Flamant P H, Durry G, Dumelie N, Parvitte B and Zéninari V 2009 Appl. Opt. 48 5475
[12] Li J S, Durry G, Cousin J, Joly L, Parvitte B, Flamant P H, Gibert F and Zéninari V 2011 J. Quantum Spectrosc. Radiat. Transfer 112 1411
[13] Li J S, Durry G, Cousin J, Joly L, Parvitte B and Zéninari V 2012 Spectrochimica Acta Part. A 85 74
[14] Benner D C, Devi V M, Sung K, Brown L R, Miller C E, Payne V H, Drouin B J, Yu S S, Crawford T J, Mantz A W, Smith M A H and Gamache R R 2016 J. Mol. Spectrosc. 326 21
[15] Gamache R R, Lamouroux J, Blot-Lafon V and Lopes E 2014 J. Quantum Spectrosc. Radiat. Transfer 135 30
[16] Rothman L S, Gordon I E, Babikov Y L, et al. 2013 J. Quantum Spectrosc. Radiat. Transfer 130 4
[17] Ma H L, Liu Q, Cao Z S, Chen W D, Vicet A, Huang Y B, Zhu W Y, Gao X M and Rao R Z 2016 J. Quantum Spectrosc. Radiat. Transfer 171 50
[18] Ma H L, Sun M G, Liu A W, Vicet A, Chen W D, Cao Z S, Wang G S, Liu Q, Gao X M and Rao R Z 2015 Acta Phys. Sin. 64 153301(in Chinese)
[19] Régalia-Jarlot L, Zéninari V, Parvittea B, Grossela A, Thomas X, Heydena P. von der and Durry G 2006 J. Quantum Spectrosc. Radiat. Transfer 101 325
[20] Corsia C, D'Amato F, DeRosa M D and Modugno G 1999 Eur. Phys. J. D 6 327
[21] Toth R A, Brown L R, Miller C E, Devi V M and Benner D C 2006 J. Mol. Spectrosc. 239 243
[22] Toth R A, Brown L R, Miller C E, Devi V M and Benner D C 2007 J. Mol. Spectrosc. 242 131
[1] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[2] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[3] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[4] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[5] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[6] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[7] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[8] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[9] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[10] Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission
Ru-Wen Wang(王汝雯), Pin-Hua Xie(谢品华), Jin Xu(徐晋), Ang Li(李昂). Chin. Phys. B, 2019, 28(1): 013301.
[11] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[12] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[13] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[14] Wavelength modulation spectroscopy at 1530.32 nm for measurements of acetylene based on Fabry-Perot tunable filter
Yun-Long Li(李运龙), Bing-Chu Yang(杨兵初), Xue-Mei Xu(许雪梅). Chin. Phys. B, 2016, 25(2): 024208.
[15] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
No Suggested Reading articles found!