Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 123301    DOI: 10.1088/1674-1056/23/12/123301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Infrared diode laser spectroscopy of O2–N2O van der Waals complex in the ν1 symmetric stretch region of N2O

Li Song (李松)a b, Zheng Rui (郑锐)c, Duan Chuan-Xi (段传喜)a
a College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China;
b College of Physical Science and Technology, Yangtze University, Jingzhou 434023, China;
c School of Mathematics & Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Abstract  The rovibrational spectrum of O2–N2O van der Waals complex is measured in the v1 symmetric stretch region of N2O monomer using a tunable diode laser spectrometer. The complex is generated by a slit-pulsed supersonic expansion with gas mixtures of O2, N2O, and He. Both a- and b-type transitions are observed. The effective Hamiltonian for an open-shell complex consisting of a diatomic molecule in a 3Σ electronic state and a closed-shell partner is used to analyze the observed spectrum. Molecular constants in the vibrationally excited state are determined accurately. The band-origin of the spectrum is determined to be 1284.7504(25) cm-1, red-shifted from that of the N2O monomer by ~ 0.1529 cm-1.
Keywords:  rovibrational spectrum      van der Waals complex      intermolecular interactions  
Received:  16 April 2014      Revised:  15 July 2014      Accepted manuscript online: 
PACS:  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
  33.20.Ea (Infrared spectra)  
  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grants Nos. 11174098, 11304023, and 11304095).

Corresponding Authors:  Duan Chuan-Xi     E-mail:  cxduan@phy.ccnu.edu.cn

Cite this article: 

Li Song (李松), Zheng Rui (郑锐), Duan Chuan-Xi (段传喜) Infrared diode laser spectroscopy of O2–N2O van der Waals complex in the ν1 symmetric stretch region of N2O 2014 Chin. Phys. B 23 123301

[1]Wu L, Zheng L J, Kaniki K, Chen Y Q and Yang X H 2007 Chin. Phys. Lett. 24 90
[2]Zhu Z L, Lang J H and Qiao H 2013 Acta Phys. Sin. 62 163103 (in Chinese)
[3]Gao X Y, You K, Zhang X M, Liu Y L and Liu Y F 2013 Acta Phys. Sin. 62 233302 (in Chinese)
[4]Shao X P, Zhao M and Yang X H 2013 Chin. Phys. B 22 073302
[5]Beneventi L, Casavecchia P, Pirani F, Vecchiocattivi F, Volpi G, Brocks G, van der Avoird A, Heijmen B and Reuss J 1991 J. Chem. Phys. 95 195
[6]Henderson G and Ewing G E 1973 J. Chem. Phys. 59 2280
[7]Mettes J, Heyrnen B, Verhoeve P, Reuss J, Laine D C and Brocks G 1985 Chem. Phys. 92 9
[8]Gomes J A G, Gossage J L, Balu H, Kesmez M, Bowen F, Lumpkin R S and Cocke D L 2005 Spectrochimica Acta Part A 61 3082
[9]Cooper P D, Kjaergaard H G, Langford V S, McKinley A J, Quickenden T I, Robinson T W and Schofield D P 2005 J. Phys. Chem. A 109 4274
[10]Kuma S, Slipchenko M N, Momose T and Vilesov A F 2010 J. Phys. Chem. A 114 9022.
[11]Kasai Y, Dupuy E, Saito R, Hashimoto K, Sabu A, Kondo S, Sumiyoshi Y and Endo Y 2011 Atmos. Chem. Phys. 11 8607
[12]Walker A R H, Fraser G T, Hougen J T, Lugez C L, Suenram R D and Fawzy W M, "Electron-spin and tunneling effects in the microwave spectrum of SO2-O2", in: WI-08, the 52nd International Symposium on Molecular Spectroscopy, 1997, Ohio State University, Columbus, Ohio, USA
[13]Walker A R H, Fraser G T, Hougen J T, Suenram R D, Fawzy W M and Novick S E, "An improved fit of the microwave spectrum of SO2-O2", in: FD-08, the 53rd International Symposium on Molecular Spectroscopy, 1998, Ohio State University, Columbus, Ohio, USA
[14]Bahou M, Schriver-Mazzuoli L, Camy-Peyret C, Schriver A, Chia-vassa T and Aycard J P 1997 Chem. Phys. Lett. 265 145
[15]Qian H B, Seccombe D and Howard B J 1997 J. Chem. Phys. 107 7658
[16]Hunt R D and Andrews L 1987 J. Chem. Phys. 86 3781
[17]Fawzy W M, Lovejoy C M, Nesbitt D J and Hougen J 2002 J. Chem. Phys. 117 693
[18]Wu S, Sedo G, Grumstrup E M and Leopold K R 2007 J. Chem. Phys. 127 204315
[19]van Lenthe J H and van Duijneveldt F B 1984 J. Chem. Phys. 81 3168
[20]Cybulski S M, Kendall R A, Chalasinski G, Severson M W and Szczesniak M M 1997 J. Chem. Phys. 106 7731
[21]Sabu A, Kondo S, Miura N and Hashimoto K 2004 Chem. Phys. Lett. 391 101
[22]Sabu A, Kondo S, Saito R, Kasai Y and Hashimoto K 2005 J. Phys. Chem. A 109 1836
[23]Sapse A M 1983 J. Chem. Phys. 78 5733
[24]Reed A E, Weinhold F, Curtiss L A and Pochatko D J 1984 J. Chem. Phys. 84 5687
[25]Fawzy W M 2006 J. Chem. Phys. 124 164303
[26]Fawzy W M 1998 J. Chem. Phys. 109 348
[27]Zheng R, Zhu Y, Li S, Fang M and Duan C X 2011 J. Mol. Spectrosc. 265 102
[28]Li S, Zheng R, Zhu Y and Duan C X 2011 J. Chem. Phys. 134 134304
[29]Reich M, Schieder R, Clar H J and Winnewisser G 1986 Appl. Opt. 25 130
[30]L S Rothman et al. 2009 Journal of Quantitative Spectroscopy and Radiative Transfer 110 533
[31]Qian H B, Low S J, Seccombe D and Howard B J 1997 J. Chem. Phys. 107 7651
[32]Dehghany M, Afshari M, Thompson R I, Moazzen-Ahmadi N and McKellar A R W 2008 J. Mol. Spectrosc. 252 1
[33]Dehghany M, Afshari M, Moazzen-Ahmadi N and McKellar A R W 2009 J. Chem. Phys. 130 044303
[34]Fawzy W M 2010 Comp. Phys. Comm. 181 1789
[35]Randall R W, Dyke T R and Howard B J 1988 Faraday. Discuss. Chem. Soc. 86 21
[1] Controllable growth of low-dimensional nanostructures on well-defined surfaces
Qin Zhi-Hui (秦志辉). Chin. Phys. B, 2013, 22(9): 098108.
No Suggested Reading articles found!