Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050702    DOI: 10.1088/1674-1056/abd6fb
GENERAL Prev   Next  

High performance infrared detectors compatible with CMOS-circuit process

Chao Wang(王超)1,2, Ning Li(李宁)1, Ning Dai(戴宁)1,3,4,†, Wang-Zhou Shi(石旺舟)5, Gu-Jin Hu(胡古今)5,‡, and He Zhu(朱贺)6
1 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
4 Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou 213164, China;
5 Department of Physics, College of Mathematics and Science, Shanghai Normal University, Shanghai 200234, China;
6 Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  A type of Si-based blocked impurity band photoelectric detector with a planar architecture is designed and demonstrated by a modified silicon semiconductor processing technique. In this route, multiple ion implantation is utilized to ensure the uniform distribution of the P elements in silicon, and rapid thermal annealing treatment is used to activate the P atoms and reduce damages caused by ion-implantation. The fabricated prototype device exhibits an excellent photoelectric response performance. With a direct current (DC) bias voltage of -2.3 V, the device detectivity to blackbody irradiation is as high as 5×1013cm·Hz1/2/W, which corresponds to a device responsivity of nearly 4.6 A/W, showing their potential applications in infrared detection, infrared astrophysics, and extraterrestrial life science. In particular, the developed device preparation process is compatible with that for the CMOS-circuit, which greatly reduces the manufacturing cost.
Keywords:  Si:P      long wavelength detectors      blocked impurity band      terahertz  
Received:  10 August 2020      Revised:  18 December 2020      Accepted manuscript online:  28 December 2020
PACS:  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
  33.20.Ea (Infrared spectra)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11933006, 61805060, and 61290304).
Corresponding Authors:  Ning Dai, Gu-Jin Hu     E-mail:  ndai@mail.sitp.ac.cn;hugj@shnu.edu.cn

Cite this article: 

Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺) High performance infrared detectors compatible with CMOS-circuit process 2021 Chin. Phys. B 30 050702

[1] Mcintosh A I, Yang B, Goldup S M, Watkinson M and Donnan R S 2012 Chem. Soc. Rev. 41 2072
[2] Kulesa C 2011 IEEE Trans. Terahertz Sci. Technol. 1 232
[3] Jansen C, Wietzke S, Peters O, Scheller M and Koch M 2010 Appl. Opt. 49 48
[4] Hogue H H, Mlynczak M G, Abedin M N, Masterjohn S A and Huffman J E 2008 Proc. SPIE-Int. Soc. Opt. Eng. 7082 70820E
[5] Stetson S B, Reynolds D B, Stapelbroek M G and Stermer R L 1986 Proc. SPIE-Int. Soc. Opt. Eng. 686 48
[6] James B, Matin A, Joy C, Chen Y Z, Ho A G, Valerio A, Raj S V, Gao Y, Crozier K B and Yu-Lun C 2018 Nat. Photon. 12 601
[7] Wang L, Liu C L, Chen X S, Zhou J, Hu W D, Wang X F, Li J H, Tang W W, Yu A Q and Wang S W 2017 Adv. Funct. Mater. 27 1604414
[8] Huo N, Gupta S and Konstantatos G 2017 Adv. Mater. 29 1606576
[9] Cai X H, Sushkov A B, Suess R J, Jadidi M M, Jenkins G S, Nyakiti L O, Myersward R L, Li S S, Yan J and Gaskill D K 2014 Nat. Nanotechnol. 9 814
[10] Zhu J Q, Zhu H, Xu H L, Weng Z P and Wu H Z 2018 Infrared Physics & Technology 92 13
[11] Hanaoka M, Kaneda H, Oyabu S, Yamagishi M, Hattori Y, Ukai S, Shichi K, Wada T, Suzuki T and Watanabe K 2016 J. Low Temperature Phys. 184 225
[12] Zhu H, Weng Z P, Zhu J Q, et al. 2017 Appl. Phys. Lett. 111 053505
[13] Zhu H, Weng Z P, Zhu J Q, Wu H Z, Li N and Dai N 2017 IEEE Trans. Electron Dev. 64 1094
[14] Petroff M D and Michael M G (U.S. Patent) 4568 960 [1986-02-04]
[15] Love P J 2004 Proc. SPIE-Int. Soc. Opt. Eng. 5499 86
[16] Hogue H H, Dereniak E L, Hartke J P, Atkins E, Reynolds D, Levan P D, Sood A K, Salcido M, Dawson L and Longshore R E 2010 Proc. SPIE 7780, Detectors and Imaging Devices: Infrared, Focal Plane, Single Photon, September 2, 2010, San Diego, California, USA, 778004
[17] Hogue H H, Longshore R E, Sood A K, Mattson R B, Stapelbroek M G, Dereniak E L, Hartke J P, Masterjohn S A, Larsen M F and Elwell J D 2007 Proc. SPIE 6660, Infrared Systems and Photoelectronic Technology Ⅱ, September 19, 2007, San Diego, California, USA, 66600S
[18] Liao K S, Li Z F, Wang C, Li L, Zhou X H, Li N and Dai N 2016 J. Infrared Millim. Waves 35 37 (in Chinese)
[19] Liao K S, Li N, Wang C, Li L, Jing Y L, Wen J, Li M Y, Wang H, Zhou X H, Li Z F and Lu W 2014 Appl. Phys. Lett. 105 183903
[20] Liao K S, Li Z F, Li L, Wang C, Zhou X H, Dai N and Li N 2015 Acta Phys. Sin. 64 227302 (in Chinese)
[21] Beeman J W, Goyal S, Reichertz L A and Haller E E 2007 Infrared Physics & Technology 51 60
[22] Szmulowicz F and Madarasz F L 1987 J. Appl. Phys. 62 2533
[23] Zhu H, Wang C, Wang P, He J L and Hu W D 2019 IEEE Trans. Electron Dev. 66 3891
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!