|
|
Electric dipole moment function and line intensities for the ground state of carbon monxide |
Chen Hua-Jun (陈华君)a, Wu Jie (吴杰)b, Liu Hao (刘浩)b, Cheng Xin-Lu (程新路)a |
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b Science and Technology on Optical Radiation Laboratory, Beijing 100854, China |
|
|
Abstract An accurate electric dipole moment function (EDMF) is obtained for the carbon monoxide (CO) molecule (X1Σ+) by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is found using the highly accurate, multi-reference averaged coupled-pair functional (ACPF) approach with the basis set, aug-cc-pV6Z, and a finite-field with ± 0.005 a.u. (The unit a.u. is the abbreviation of atomic unit). This ab initio EDMF is very consistent with the fitted ones. The vibrational transition matrix moments and the Herman–Wallis factors, calculated with the Rydberg–Klein–Rees (RKR) potential and the fitted and ab initio EDMFs, are compared with experimental measurements. The consistency of these line intensities with the high-resolution transmission (HITRAN) molecular database demonstrates the improved accuracy of the fitted and ab initio EDMFs derived in this work.
|
Received: 28 November 2014
Revised: 22 March 2015
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
33.20.Ea
|
(Infrared spectra)
|
|
33.20.Vq
|
(Vibration-rotation analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217 and 11474207). |
Corresponding Authors:
Cheng Xin-Lu
E-mail: chengxl@scu.edu.cn
|
Cite this article:
Chen Hua-Jun (陈华君), Wu Jie (吴杰), Liu Hao (刘浩), Cheng Xin-Lu (程新路) Electric dipole moment function and line intensities for the ground state of carbon monxide 2015 Chin. Phys. B 24 083102
|
[1] |
Winnewisser G, Herbst E and Ungerechts H 1992 Spectroscopy of the Earth's atmosphere and interstellar mediu (Boston: Academic Press)
|
[2] |
Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, LeRoy R J, Li G, Long D A, Lyulin O, Mackie C, Massie S T, Mikhailenko S, Müller H S, Naumenko O, Nikitin A, Orphal J, Perevalov V I, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev Vl G and Wagner G 2013 J. Quantum Spectrosc. Radiat. Transfer 130 4
|
[3] |
Rothman L S, Gordon I E, Barberb R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A and Tennyson J 2010 J. Quantum Spectrosc. Radiat. Transfer 111 2139
|
[4] |
Varansi P and Sarangi S 1975 J. Quantum Spectrosc. Radiat. Transfer 15 473
|
[5] |
Varghese P L and Hanson R K 1980 J.Quantum Spectrosc. Radiat. Transfer 24 479
|
[6] |
Chackerian Jr C, Guelachvili G and Tipping R H 1983 J. Quantum Spectrosc. Radiat. Transfer 30 107
|
[7] |
Zou Q and Varanasi P 2002 J. Quantum Spectrosc. Radiat. Transfer 75 63
|
[8] |
Bouanich J P and Brodbeck C 1974 J. Quantum Spectrosc. Radiat. Transfer 14 1199
|
[9] |
Chandraiah G and Hèbert G R 1981 Can. J. Phys. 59 1367
|
[10] |
Devi V M, Benner D C, Smith M A H, Rinsland C P and Mantz A W 2002 J. Quantum Spectrosc. Radiat. Transfer 75 455
|
[11] |
Devi V M, Benner D C, Smith M A H, Mantz A W, Sung K, Brown L R and Predoi-Cross A 2012 J. Quantum Spectrosc. Radiat. Transfer 113 1013
|
[12] |
Toth R A, Hunt R H and Plyler E K 1969 J. Mol. Spectrosc. 32 85
|
[13] |
Henningsen J, Simonsen H, M?gelberg T and Truds? E 1999 J. Mol. Spectrosc. 193 354
|
[14] |
Picqué N, Guelachvili G, Dana V and Mandin J Y 2000 J. Mol. Spectrosc. 517–518 427
|
[15] |
Chackerian C Jr, Freedman R, Giver L P and Brown L R 2001 J. Mol. Spectrosc. 210 119
|
[16] |
Jacquemart D, Mandin J Y, Dana V, Picqué N and Guelachvili G 2001 Eur. Phys. J. D 14 55
|
[17] |
Sung K and Varanasi P 2004 J. Quantum Spectrosc. Radiat. Transfer 83 445
|
[18] |
Chackerian C Jr and Valero Francisco P J 1976 J. Mol. Spectrosc. 62 338
|
[19] |
Ogilvie J F, Cheah S L, Lee Y P and Sauer S P A 2002 Theor. Chem. Acc. 108 85
|
[20] |
Chung C Y, Ogilvie J F and Lee Y P 2005 J. Phys. Chem. A 109 7854
|
[21] |
Chackerian C Jr 1976 J. Chem. Phys. 65 4228
|
[22] |
Chackerian C Jr and Tipping R H 1983 J. Mol.Spectrosc. 99 431
|
[23] |
Bouanich J P, Thanh N V and Rossi I 1983 J. Quantum Spectrosc. Radiat. Transfer 30 9
|
[24] |
Chackerian C Jr, Fakkenq R, Guelachvili G, Rossetti C and Urba W 1984 Can. J. Phys. 62 1579
|
[25] |
Kiriyama F and Rao B S 2000 J. Quantum Spectrosc. Radiat. Transfer 65 673
|
[26] |
Buldakov M A and Cherepanov V N 2004 J. Phys. B: At. Mol. Opt. Phys. 37 3973
|
[27] |
Goorvitch D, Chackerian C and JR 1994 Astrophys. J. Suppl. Ser. 91 483
|
[28] |
Goorvitch D, Chackerian C and JR 1994 Astrophys. J. Suppl. Ser. 92 311
|
[29] |
Goorvitch D 1994 Astrophys. J. Suppl. Ser. 95 535
|
[30] |
Young L A and Eachus W J 1966 J. Chem. Phys. 44 4195
|
[31] |
Werner H J 1981 Mol. Phys. 44 111
|
[32] |
Cooper D M and anghoff S R 1981 J. Chem. Phys. 74 1200
|
[33] |
Diercksen G H F and Sadlej A 1985 Chem. Phys. 96 17
|
[34] |
Diercksen G H F and Sadlej A 1985 Chem. Phys. 96 43
|
[35] |
Kellö V, Noga J, Dierchsen G H F and Sadlej A 1988 Chem. Phys. Lett. 152 387
|
[36] |
Langhoff S R and Bauschlicher Jr C W 1995 J. Chem. Phys. 102 5220
|
[37] |
Schautz F and Flad H J 1999 J. Chem. Phys. 110 11700
|
[38] |
Tipping R H and Herman R M 1970 J. Mol. Spectrosc. 36 404
|
[39] |
Kiriyama F, Rao B S and Nangia V K 2001 J. Quantum Spectrosc. Radiat. Transfer 69 35
|
[40] |
Li G, Gordon I E, Bernath P F and Rothman L S 2011 J. Quantum Spectrosc. Radiat. Transfer 112 1543
|
[41] |
Brault J W, Brown L R, Chackerian C Jr, Freedman R, Predoi-Cross A and Pin A S 2003 J. Mol. Spectrosc. 222 220
|
[42] |
Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
|
[43] |
Gdanitz R J and Ahlrichs R 1988 Chem. Phys. Lett. 143 413
|
[44] |
Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M et al. MOLPRO, version 2009.1, a package of ab initio programs, 2009, see http://www.molpro.net.
|
[45] |
Peterson K A, Woon D E and Dunning T H 1994 J. Chem. Phys. 100 7410
|
[46] |
Peterson K A, Kendall R A and Dunning T H 1993 J. Chem. Phys. 99 1930
|
[47] |
Dunning T H 1989 J. Chem. Phys. 90 1007
|
[48] |
Le Roy R J April 2007 LEVEL 8.0, University of Waterloo Chemical Physics Research Report CP-663. see:.
|
[49] |
Le Roy R J, RKR1 2.0, University of Waterloo Chemical Physics Research Report CP-657R; 2004. see:.
|
[50] |
Velichko T I, Mikhailenko S N and Tashkun S A 2012 J. Quantum Spectrosc. Radiat. Transfer 113 1643
|
[51] |
Le Roy R J A Practical Guide to Least-Squares Fitted, University of Waterloo Chemical Physics Research Report CP-628; 1997, see:
|
[52] |
Huber K P and Herzberg G 1979 Constants of Diatomic Molecules (New York: Van Nostrand Reinhold).
|
[53] |
Chackerian C, Kshirsagar R J, Giver L P and Brown L R 1999 OSA Tech. Dig. (1999 Opt. Soc. Am.) 22 139
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|