|
|
Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6 |
Qing-Qing Wang(王青青)1, Peng Li(李鹏)2, Tao Gao(高涛)1, Hong-Yan Wang(王红艳)3, Bing-Yun Ao(敖冰云)4 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
3 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
4 Science and Technology on Surface Physics and Chemistry Laboratory, P. O. Box 9071-35, Jiangyou 621907, China |
|
|
Abstract Density functional theory (DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C-C bond activation. A comprehensive description of the reaction mechanisms leading to two different reaction products is presented. We report a complete exploration of the potential energy surfaces by taking into consideration different spin states. In addition, the intermediate and transition states along the reaction paths are characterized. Total, partial, and overlap population density of state diagrams and analyses are also presented. Furthermore, the natures of the chemical bonding of intermediate and transition states are studied by using topological method combined with electron localization function (ELF) and Mayer bond order. Infrared spectrum (IR) is obtained and further discussed based on the optimized geometries.
|
Received: 29 December 2015
Revised: 16 February 2016
Accepted manuscript online:
|
PACS:
|
31.10.+z
|
(Theory of electronic structure, electronic transitions, and chemical binding)
|
|
33.20.Ea
|
(Infrared spectra)
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
31.15.E-
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160, 21401173, and 11364023). |
Corresponding Authors:
Tao Gao
E-mail: gaotao@scu.edu.cn
|
Cite this article:
Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云) Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6 2016 Chin. Phys. B 25 063102
|
[1] |
Emanuela Di Santo and Marta Santos 2011 J. Am. Chem. Soc. 133 1955
|
[2] |
Santos M, Marc-alo J, Pires de Matos A, Gibson J K and Haire R G 2002 J. Phys. Chem. A 106 7190
|
[3] |
Santos M, Marc-alo J, Leal J P, Pires de Matos A, Gibson J K and Haire R G 2003 Int. J. Mass Spectrom. 228 457
|
[4] |
Gibson J K, Haire R G, Santos M, Marc-alo J and Pires deMatos A 2005 J. Phys. Chem. A 109 2768
|
[5] |
Gibson J K, Haire R G, Marc-alo J, Santos M and Pires deMato A Leal 2005 J. P. J. Nucl. Mater. 344 24
|
[6] |
Santos M, Pires de Matos A, Marc-alo J, Gibson J K, Haire R G, Tyagi R and Pitzer R M 2006 J. Phys. Chem. A 110 5751
|
[7] |
Gibson J K, Haire R G, Santos M, Pires de Matos A and Marc-alo J 2008 J. Phys. Chem. A 112 11373
|
[8] |
Marshall A G, Hendrickson C L and Jackson G S 1998 Mass Spectrom. Rev. 17 1
|
[9] |
Li P, Niu W X, Gao T and Wang H Y 2014 J. Mol. Model. 20 2466
|
[10] |
Niu W X, Zhang H, Li P and Gao T 2015 Int. J. Quantum Chem. 115 6
|
[11] |
Li P, Niu W X, Gao T and Wang H Y 2014 Chem. Phys. Chem. 15 3078
|
[12] |
Li P, Niu W X, Gao T and Wang H Y 2014 Int. J. Quantum Chem. 114 760
|
[13] |
Li P, Niu W X and Gao T 2015 J. Radio. Nucl. Chem. 304 489
|
[14] |
Li P, Niu W X and Gao T 2014 RSC Adv. 4 29806
|
[15] |
Li P, Niu W X, Tian X F, Gao T and Wang H Y 2013 J. Phys. Chem. A 117 3761
|
[16] |
Maecki J G 2010 Polyhedron 29 1973
|
[17] |
Gaussian 09 (Revision A.02), Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman A J, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A P, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas C, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian, Inc., Wallingford CT, 2009
|
[18] |
Becke A D 1993 J. Chem. Phys. 98 1372
|
[19] |
Becke A D 1993 J. Chem. Phys. 98 5648
|
[20] |
Lee C, Yang W and Parr R G 1988 Matter Mater. Phys. 37 785
|
[21] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B: Condens. Matter Mater. Phys. 46 6671
|
[22] |
Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B: Condens. Matter Mater. Phys. 54 16533
|
[23] |
Tao J, Perdew J P, Staroverov V N and Scuseria G E 2003 Phys. Rev. Lett. 91 146401
|
[24] |
Adamo C and Barone V 1999 J. Chem. Phys. 110 6158
|
[25] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[26] |
Kchle W, Dolg M, Stoll H and Preuss H 1994 J. Chem. Phys. 100 7535
|
[27] |
Krishnan R, Binkley J S, Seeger R and Pople J A 1980 J. Chem. Phys. 72 650
|
[28] |
Blaudeau J P, McGrath M P, Curtiss L A and Radom L 1997 J. Chem. Phys. 107 5016
|
[29] |
Mayer I 1983 Chem. Phys. Lett. 97 270
|
[30] |
Lu T and Chen F 2012 J. Comput. Chem. 33 580
|
[31] |
Gibson J K 2002 J. Mass Spectrosc. 214 1
|
[32] |
Gibson J K and Marcalo Coord J 2006 Chem. Rev. 250 776
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|