Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 063102    DOI: 10.1088/1674-1056/25/6/063102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6

Qing-Qing Wang(王青青)1, Peng Li(李鹏)2, Tao Gao(高涛)1, Hong-Yan Wang(王红艳)3, Bing-Yun Ao(敖冰云)4
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
3 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
4 Science and Technology on Surface Physics and Chemistry Laboratory, P. O. Box 9071-35, Jiangyou 621907, China
Abstract  

Density functional theory (DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C-C bond activation. A comprehensive description of the reaction mechanisms leading to two different reaction products is presented. We report a complete exploration of the potential energy surfaces by taking into consideration different spin states. In addition, the intermediate and transition states along the reaction paths are characterized. Total, partial, and overlap population density of state diagrams and analyses are also presented. Furthermore, the natures of the chemical bonding of intermediate and transition states are studied by using topological method combined with electron localization function (ELF) and Mayer bond order. Infrared spectrum (IR) is obtained and further discussed based on the optimized geometries.

Keywords:  reaction mechanism      Mayer bond order      electron localization function      density of states  
Received:  29 December 2015      Revised:  16 February 2016      Accepted manuscript online: 
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  33.20.Ea (Infrared spectra)  
  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.E-  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160, 21401173, and 11364023).

Corresponding Authors:  Tao Gao     E-mail:  gaotao@scu.edu.cn

Cite this article: 

Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云) Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6 2016 Chin. Phys. B 25 063102

[1] Emanuela Di Santo and Marta Santos 2011 J. Am. Chem. Soc. 133 1955
[2] Santos M, Marc-alo J, Pires de Matos A, Gibson J K and Haire R G 2002 J. Phys. Chem. A 106 7190
[3] Santos M, Marc-alo J, Leal J P, Pires de Matos A, Gibson J K and Haire R G 2003 Int. J. Mass Spectrom. 228 457
[4] Gibson J K, Haire R G, Santos M, Marc-alo J and Pires deMatos A 2005 J. Phys. Chem. A 109 2768
[5] Gibson J K, Haire R G, Marc-alo J, Santos M and Pires deMato A Leal 2005 J. P. J. Nucl. Mater. 344 24
[6] Santos M, Pires de Matos A, Marc-alo J, Gibson J K, Haire R G, Tyagi R and Pitzer R M 2006 J. Phys. Chem. A 110 5751
[7] Gibson J K, Haire R G, Santos M, Pires de Matos A and Marc-alo J 2008 J. Phys. Chem. A 112 11373
[8] Marshall A G, Hendrickson C L and Jackson G S 1998 Mass Spectrom. Rev. 17 1
[9] Li P, Niu W X, Gao T and Wang H Y 2014 J. Mol. Model. 20 2466
[10] Niu W X, Zhang H, Li P and Gao T 2015 Int. J. Quantum Chem. 115 6
[11] Li P, Niu W X, Gao T and Wang H Y 2014 Chem. Phys. Chem. 15 3078
[12] Li P, Niu W X, Gao T and Wang H Y 2014 Int. J. Quantum Chem. 114 760
[13] Li P, Niu W X and Gao T 2015 J. Radio. Nucl. Chem. 304 489
[14] Li P, Niu W X and Gao T 2014 RSC Adv. 4 29806
[15] Li P, Niu W X, Tian X F, Gao T and Wang H Y 2013 J. Phys. Chem. A 117 3761
[16] Maecki J G 2010 Polyhedron 29 1973
[17] Gaussian 09 (Revision A.02), Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman A J, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A P, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas C, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian, Inc., Wallingford CT, 2009
[18] Becke A D 1993 J. Chem. Phys. 98 1372
[19] Becke A D 1993 J. Chem. Phys. 98 5648
[20] Lee C, Yang W and Parr R G 1988 Matter Mater. Phys. 37 785
[21] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B: Condens. Matter Mater. Phys. 46 6671
[22] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B: Condens. Matter Mater. Phys. 54 16533
[23] Tao J, Perdew J P, Staroverov V N and Scuseria G E 2003 Phys. Rev. Lett. 91 146401
[24] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Kchle W, Dolg M, Stoll H and Preuss H 1994 J. Chem. Phys. 100 7535
[27] Krishnan R, Binkley J S, Seeger R and Pople J A 1980 J. Chem. Phys. 72 650
[28] Blaudeau J P, McGrath M P, Curtiss L A and Radom L 1997 J. Chem. Phys. 107 5016
[29] Mayer I 1983 Chem. Phys. Lett. 97 270
[30] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[31] Gibson J K 2002 J. Mass Spectrosc. 214 1
[32] Gibson J K and Marcalo Coord J 2006 Chem. Rev. 250 776
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Chemical bonding in representative astrophysically relevant neutral, cation, and anion HCnH chains
Ioan Baldea. Chin. Phys. B, 2022, 31(12): 123101.
[3] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[4] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[5] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[6] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[7] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[8] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[9] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[10] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[11] Water on surfaces from first-principles molecular dynamics
Peiwei You(游佩桅), Jiyu Xu(徐纪玉), Cui Zhang(张萃), and Sheng Meng(孟胜)$. Chin. Phys. B, 2020, 29(11): 116804.
[12] Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study
Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永). Chin. Phys. B, 2019, 28(11): 116301.
[13] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[14] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[15] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
No Suggested Reading articles found!