Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 053301    DOI: 10.1088/1674-1056/24/5/053301
Special Issue: TOPICAL REVIEW — Precision measurement and cold matters
TOPICAL REVIEW—Precision measurement and cold matters Prev   Next  

Optical determination of the Boltzmann constant

Cheng Cun-Feng (程存峰), Sun Y. R. (孙羽), Hu Shui-Ming (胡水明)
Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
Abstract  The Boltzmann constant kB is a fundamental physical constant in thermodynamics. The present CODATA recommended value of kB is 1.3806488(13)× 10-23 J/K (relative uncertainty 0.91 ppm), which is mainly determined by acoustic methods. Doppler broadening thermometry (DBT) is an optical method which determines kBT by measuring the Doppler width of an atomic or molecular transition. The methodology and problems in DBT are reviewed, and DBT measurement using the sensitive cavity ring-down spectroscopy (CRDS) is proposed. Preliminary measurements indicate that CRDS-based DBT measurement can potentially reach an accuracy at the 1 ppm level.
Keywords:  Boltzmann constant      Doppler broadening thermometry      metrology  
Received:  02 December 2014      Revised:  04 February 2015      Accepted manuscript online: 
PACS:  33.20.Ea (Infrared spectra)  
  31.30.J- (Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91436209, 21225314, and 91221304) and Chinese Academy of Sciences (Grant No. XDB01020000).
Corresponding Authors:  Hu Shui-Ming     E-mail:
About author:  33.20.Ea; 31.30.J-

Cite this article: 

Cheng Cun-Feng (程存峰), Sun Y. R. (孙羽), Hu Shui-Ming (胡水明) Optical determination of the Boltzmann constant 2015 Chin. Phys. B 24 053301

[1] Prestonthomas H 1990 Metrologia 27 3
[2] Fellmuth B, Wolber L, Hermier Y, Pavese F, Steur P P M, Peroni I, Szmyrka-Grzebyk A, Lipinski L, Tew W L, Nakano T, Sakurai H, Tamura O, Head D, Hill K D and Stelle A G 2005 Metrologia 42 171
[3] Mills I M, Mohr P J, Quinn T J, Taylor B N and Williams E R 2006 Metrologia 43 227
[4] Mohr P J, Taylor B N and Newell D B 2012 Rev. Mod. Phys. 84 1527
[5] Moldover M R, Gavioso R M, Mehl J B, Pitre L, de Podesta M and Zhang J T 2014 Metrologia 51 R1
[6] Gaiser C, Zandt T, Fellmuth B, Fischer J, Jusko O and Sabuga W 2013 Metrologia 50 L7
[7] Schmidt J W, Gavioso R M, May E F and Moldover M R 2007 Phys. Rev. Lett. 98 254504
[8] Jentschura U D, Puchalski M and Mohr P J 2011 Phys. Rev. A 84 064102
[9] Benz S P, Pollarolo A, Qu J, Rogalla H, Urano C, Tew W L, Dresselhaus P D and White D R 2011 Metrologia 48 142
[10] Colclough A R, Quinn T J and Chandler T R D 1979 Proc. Roy. Soc. Lodon 368 125
[11] Moldover M R, Trusler J P M, Edwards T J, Mehl J B and Davis R S 1988 Phys. Rev. Lett. 60 249
[12] Pitre L, Guianvarch Cé, Sparasci F, Guillou A, Truong D, Hermier Y and Himbert M E 2009 C. R. Phys. 10 835
[13] Sutton G, Underwood R, Pitre L, Podesta M and Valkiers S 2010 Int. J. Thermophys. 31 1310
[14] Gavioso R M, Benedetto G, Albo P A G, Ripa D M, Merlone A, Guianvarch C, Moro F and Cuccaro R 2010 Metrologia 47 387
[15] Pitre L, Sparasci F, Truong D, Guillou A, Risegari L and Himbert M E 2011 Int. J. Thermophys. 32 1825
[16] de Podesta M, Underwood R, Sutton G, Morantz P, Harris P, Mark D F, Stuart F M, Vargha G and Machin G 2013 Metrologia 50 354
[17] Bernd F, Joachim F, Christof G, Otto J, Tasanee P, Wladimir S and Thorsten Z 2011 Metrologia 48 382
[18] Lin H, Feng X J, Gillis K A, Moldover M R, Zhang J T, Sun J P and Duan Y Y 2013 Metrologia 50 417
[19] Moretti L, Castrillo A, Fasci E, De Vizia M D, Casa G, Galzerano G, Merlone A, Laporta P and Gianfrani L 2013 Phys. Rev. Lett. 111 060803
[20] Daussy C, Guinet M, Amy-Klein A, Djerroud K, Hermier Y, Briaudeau S, Bordé Ch J and Chardonnet C 2007 Phys. Rev. Lett. 98 250801
[21] Djerroud K, Lemarchand C, Gauguet A, Daussy C, Briaudeau S, Darquie B, Lopez O, Amy-Klein A, Chardonnet C and Borde C J 2009 C. R. Phys. 10 883
[22] Lemarchand C, Triki M, Darquie B, Borde Ch J, Chardonnet C and Daussy C 2011 New J. Phys. 13 073028
[23] Rohart F, Mejri S, Sow P L T, Tokunaga S K, Chardonnet C, Darquié B, Dinesan H, Fasci E, Castrillo A, Gianfrani L and Daussy C 2014 Phys. Rev. A 90 042506
[24] Casa G, Castrillo A, Galzerano G, Wehr R, Merlone A, Di Serafino D, Laporta P and Gianfrani L 2008 Phys. Rev. Lett. 100 200801
[25] Yamada K M T, Onae A, Hong F, Inaba H and Shimizu T 2009 C. R. Phys. 10 907
[26] Sun Y R, Pan H, Cheng C F, Liu A W, Zhang J T and Hu S M 2011 Opt. Express 19 19993
[27] Okeefe A and Deacon D A G 1988 Rev. Sci. Instrum. 59 2544
[28] Kassi S and Campargue A 2012 J. Chem. Phys. 137 234201
[29] Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H and Hodges J T 2011 Rev. Sci. Instrum. 82 063107
[30] Pan H, Cheng C F, Sun Y R, Gao B, Liu A W and Hu S M 2011 Rev. Sci. Instrum. 82 103110
[31] Truong G W, Douglass K O, Maxwell S E, van Zee R D, Plusquellic D F, Hodges J T and Long D A 2013 Nat. Photon. 7 532
[32] Chen B, Sun Y R, Zhou Z Y, Chen J, Liu A W and Hu S M 2014 Appl. Opt. 53 7716
[33] Cheng C F, Sun Y R, Pan H, Lu Y, Li X F, Wang J, Liu A W and Hu S M 2012 Opt. Express 20 9956
[34] Borde C J 2009 C. R. Phys. 10 866
[35] Cygan A, Lisak D, Trawiński R S and Ciurylo R 2010 Phys. Rev. A 85 032515
[36] Triki M, Lemarchand C, Darquié B, Sow P L T, Roncin V, Chardonnet C and Daussy C 2012 Phys. Rev. A 85 062510
[37] Galatry L 1961 Phys. Rev. 122 1218
[38] Rautian S G and Sobelman II 1967 Sov. Phys. Usp. 9 701
[39] Wcislo P and Ciurylo R 2013 J. Quant. Spectrosc. Radiat. Transfer. 120 36
[40] Cygan A, Wójtewicz S, Domyslawska J, Maslowski P, Bielska K, Piwiński M, Stec K, Trawiński R S, Ozimek F, Radzewicz C, Abe H, Ido T, Hodges J T, Lisak D and Ciurylo R 2013 Eur. Phys. J. Special Topics 222 2119
[41] Hartmann J M, Tran H, Ngo N H, Landsheere X, Chelin P, Lu Y, Liu A W, Hu S M, Gianfrani L, Casa G, Castrillo A, Lepere M, Deliere Q, Dhyne M and Fissiaux L 2013 Phys. Rev. A 87 013403
[42] Rothman L S, Gordon I E, Babikov Y, et al. 2013 J. Quant. Spectrosc. Radiat. Transfer. 130 4
[1] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[2] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[3] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[4] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[5] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[6] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[7] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[8] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[9] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[10] Super-sensitive phase estimation with coherent boosted light using parity measurements
Lan Xu(许兰), Qing-Shou Tan(谭庆收). Chin. Phys. B, 2018, 27(1): 014203.
[11] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
[12] Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states
Chao-Ping Wei(魏朝平), Xiao-Yu Hu(胡小玉), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2016, 25(4): 040601.
[13] An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks
N Batra, B K Sahoo, S De. Chin. Phys. B, 2016, 25(11): 113703.
[14] Fabrication and measurement of traceable pitch standard with a big area at trans-scale
Deng Xiao (邓晓), Li Tong-Bao (李同保), Lei Li-Hua (雷李华), Ma Yan (马艳), Ma Rui (马蕊), Weng Jun-Jing (翁浚婧), Li Yuan (李源). Chin. Phys. B, 2014, 23(9): 090601.
[15] Towards quantum-enhanced precision measurements:Promise and challenges
Zhang Li-Jian (张利剑), Xiao Min (肖敏). Chin. Phys. B, 2013, 22(11): 110310.
No Suggested Reading articles found!