Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 083101    DOI: 10.1088/1674-1056/ab973d
Special Issue: SPECIAL TOPIC — Water at molecular level
SPECIAL TOPIC—Water at molecular level Prev   Next  

Discontinuous transition between Zundel and Eigen for H5O2+

Endong Wang(王恩栋)1, Beien Zhu(朱倍恩)1,2, Yi Gao(高嶷)1,2
1 Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

The hydrated-proton structure is critical for understanding the proton transport in water. However, whether the hydrated proton adopts Zundel or Eigen structure in solution has been highly debated in the past several decades. Current experimental techniques cannot directly visualize the dynamic structures in situ, while the available theoretical results on the infrared (IR) spectrum derived from current configurational models cannot fully reproduce the experimental results and thus are unable to provide their precise structures. In this work, using H5O2+ as a model, we performed first-principles calculations to demonstrate that both the structural feature and the IR frequency of proton stretching, characteristics to discern the Zundel or Eigen structures, evolve discontinuously with the change of the O-O distance. A simple formula was introduced to discriminate the Zundel, Zundel-like, and Eigen-like structures. This work arouses new perspectives to understand the proton hydration in water.

Keywords:  Eigen      Zundel      infrared absorption      ab initio calculations  
Received:  22 April 2020      Revised:  11 May 2020      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  33.20.Ea (Infrared spectra)  
  33.15.Bh (General molecular conformation and symmetry; stereochemistry)  
  33.20.Tp (Vibrational analysis)  

Project supported by the National Natural Science Foundation of China (Grant No. 21773287).

Corresponding Authors:  Yi Gao     E-mail:

Cite this article: 

Endong Wang(王恩栋), Beien Zhu(朱倍恩), Yi Gao(高嶷) Discontinuous transition between Zundel and Eigen for H5O2+ 2020 Chin. Phys. B 29 083101

[1] Yuan W, Zhu B, Li X Y, Hansen T W, Ou Y, Fang K, Yang H, Zhang Z, Wagner J B, Gao Y and Wang Y 2020 Science 367 428
[2] Thämer M, De Marco L, Ramasesha K, Mandal A and Tokmakoff A 2015 Science 350 78
[3] Shin J W, Hammer N I, Diken E G, Johnson M A, Walters R S, Jaeger T D, Duncan M A, Christie R A and Jordan K D 2004 Science 304 1137
[4] Headrick J M, Diken E G, Walters R S, Hammer N I, Christie R A, Cui J, Myshakin E M, Duncan M A, Johnson M A and Jordan K D 2005 Science 308 1765
[5] Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H 2009 Phys. Rev. Lett. 103 137801
[6] Gong Z Y, Duan S, Tian G, Jiang J, Xu X and Luo Y 2015 Phys. Chem. Chem. Phys. 17 12698
[7] Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Nat. Phys. 5 565
[8] Guo J, Meng X, Chen J, Peng J, Sheng J, Li X Z, Xu L, Shi J R, Wang E and Jiang Y 2014 Nat. Mater. 13 184
[9] Zhu B, Xu Z, Wang C and Gao Y 2016 Nano Lett. 16 2628
[10] Wan R, Li J, Lu H and Fang H 2005 J. Am. Chem. Soc. 127 7166
[11] Yang J, Fang H and Gao Y 2016 J. Phys. Chem. L 7 1788
[12] Feng Y, Wang Z, Guo J, Chen J, Wang E G, Jiang Y and Li X Z 2018 J. Chem. Phys. 148 102329
[13] Wang C, Zhou B, Tu Y, Duan M, Xiu P, Li J and Fang H 2012 Sci. Rep. 2 282
[14] Ren X P, Li L T and Wang C L 2013 Chin. Phys. B 22 16801
[15] Duan S, Tian G and Luo Y 2016 Angew. Chem. Int. Ed. 55 1041
[16] Hu J and Gao Y 2019 Acta Phys. Sin. 68 016803(in Chinese)
[17] Mallamace F, Corsaro C, Fazio E, Chen S H and Mallamace D 2019 Sci. Chin.-Phys. Mech. Astron. 62 107005
[18] Andreani C, Corsaro C, Mallamace D, Romanelli G, Senesi R and Mallamace F 2019 Sci. Chin.-Phys. Mech. Astron. 62 107008
[19] Zhovtobriukh I, Cabral B J C, Corsaro C, Mallamace D and Pettersson L G M 2019 Sci. Chin.-Phys. Mech. Astron. 62 107010
[20] Michele V D, Romanelli G and Cupane A 2019 Sci. Chin.-Phys. Mech. Astron. 62 107012
[21] Agmon N, Bakker H J, Campen R K, Henchman R H, Pohl P, Roke S, Thämer M and Hassanali A 2016 Chem. Rev. 116 7642
[22] Voth G A 2006 Acc. Chem. Res. 39 143
[23] Cao Z, Peng Y, Yan T, Li S, Li A and Voth G A 2010 J. Am. Chem. Soc. 132 11395
[24] Marx D, Tuckerman M E, Hutter J and Parrinello M 1999 Nature 397 601
[25] Muñoz-Santiburcio D, Wittekindt C and Marx D 2013 Nat. Commun. 4 2349
[26] Xu J, Jiang H, Shen Y, Li X Z, Wang E G and Meng S 2019 Nat. Commun. 10 3971
[27] Chen J, Li X Z, Zhang Q, Michaelides A and Wang E 2013 Phys. Chem. Chem. Phys. 15 6344
[28] Tyrode E, Sengupta S and Sthoer A 2020 Nat. Commun. 11 493
[29] Fournier J A, Carpenter W B, Lewis N H C and Tokmakoff A 2018 Nat. Chem. 10 932
[30] Dahms F, Fingerhut B P, Nibbering E T J, Pines E and Elsaesser T 2017 Science 357 491
[31] Schran C, Brieuc F and Marx D 2018 J. Chem. Theory Comput. 14 5068
[32] Fournier J A, Wolke C T, Johnson M A, Odbadrakh T T, Jordan K D, Kathmann S M and Xantheas S S 2015 J. Phys. Chem. A 119 9425
[33] Yu Q and Bowman J M 2016 J. Phys. Chem. L 7 5259
[34] Vener M V and Librovich N B 2009 Int. Rev. Phys. Chem. 28 407
[35] Agmon N 2016 Nat. Chem. 8 206
[36] Miliordos E, Aprá E and Xantheas S S 2013 J. Chem. Phys. 139 114302
[37] Xantheas S S and Dunning T H 1993 J. Chem. Phys. 99 8774
[38] Soper A K and Benmore C J 2008 Phys. Rev. Lett. 101 065502
[39] Lin I C, Seitsonen A P, Tavernelli I and Rothlisberger U 2012 J. Chem. Theory Comput. 8 3902
[40] Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G J and Wallingford G I 2009 Gaussian 09, Rev. D 01
[41] Neese F 2012 WIREs Comput. Mol. Sci. 2 73
[43] Stoyanov E S, Stoyanova I V and Reed C A 2011 Chem. Sci. 2 462
[44] Hammer N I, Diken E G, Roscioli J R, Johnson M A, Myshakin E M, Jordan K D, McCoy A B, Huang X, Bowman J M and Carter S 2005 J. Chem. Phys. 122 244301
[45] Kulig W and Agmon N 2014 J. Phys. Chem. B 118 278
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[3] Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths
Yuhao Zhu(朱宇豪), Rui Jin(金锐), Yong Wu(吴勇), and Jianguo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043103.
[4] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[5] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[6] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[7] Delta-Davidson method for interior eigenproblem in many-spin systems
Haoyu Guan(关浩宇) and Wenxian Zhang(张文献). Chin. Phys. B, 2021, 30(3): 030205.
[8] Discontinuous and continuous transitions of collective behaviors in living systems
Xu Li(李旭), Tingting Xue(薛婷婷), Yu Sun(孙宇), Jingfang Fan(樊京芳), Hui Li(李辉), Maoxin Liu(刘卯鑫), Zhangang Han(韩战钢), Zengru Di(狄增如), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2021, 30(12): 128703.
[9] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[10] Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect
Bao-Rui Huang(黄保瑞), Fu-Chun Zhang(张富春), Yan-Ning Yang(杨延宁), Zhi-Yong Zhang(张志勇), Wei-Guo Wang(王卫国). Chin. Phys. B, 2019, 28(10): 108503.
[11] Analytical treatment of Anderson localization in a chain of trapped ions experiencing laser Bessel beams
Jun Wen(文军), Jian-Qi Zhang(张建奇), Lei-Lei Yan(闫磊磊), Mang Feng(冯芒). Chin. Phys. B, 2019, 28(1): 010306.
[12] Solitons in nonlinear systems and eigen-states in quantum wells
Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营), Wen-Li Yang(杨文力). Chin. Phys. B, 2019, 28(1): 010501.
[13] Tripartite continuous-variable entanglement of NOPA system
Chao-Ying Zhao(赵超樱), Cheng-Mei Zhang(张成梅). Chin. Phys. B, 2018, 27(8): 084204.
[14] Slater determinant and exact eigenstates of the two-dimensional Fermi-Hubbard model
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2018, 27(7): 073102.
[15] Preliminary computation of the gap eigenmode of shear Alfvén waves on the LAPD
Lei Chang(苌磊). Chin. Phys. B, 2018, 27(12): 125201.
No Suggested Reading articles found!