Wide dynamic detection range of methane gas based on enhanced cavity absorption spectroscopy
Yu Wang(汪玉)1,2, Bo-Kun Ding(丁伯坤)1,2, Kun-Yang Wang(王坤阳)1, Jiao-Xu Mei(梅教旭)1, Ze-Lin Han(韩泽林)1,3, Tu Tan(谈图)1, and Xiao-Ming Gao(高晓明)1,2,†
1 Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Anhui Advanced Spectroscopy Optical-electric S&T Co., Ltd
Abstract Integrated cavity output spectroscopy (ICOS) is an effective technique in trace gase detection. The strong absorption due to the long optical path of this method makes it challenging in the application scenes that have large gas concentration fluctuation, especially when the gas concentration is high. In this paper, we demonstrate an extension of the dynamic range of ICOS by using a detuned laser combined with an off-axis integrating cavity. With this, we improve the upper limit of the dynamic detection range from 0.1% (1000 ppm) to 20% of the gas concentration. This method provides a way of using ICOS in the applications with unpredictable gas concentrations such as gas leak detection, ocean acidification, carbon sequestration, etc.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0209700) and the National Natural Science Foundation of China (Grant No. 41730103).
Yu Wang(汪玉), Bo-Kun Ding(丁伯坤), Kun-Yang Wang(王坤阳), Jiao-Xu Mei(梅教旭), Ze-Lin Han(韩泽林), Tu Tan(谈图), and Xiao-Ming Gao(高晓明) Wide dynamic detection range of methane gas based on enhanced cavity absorption spectroscopy 2022 Chin. Phys. B 31 040705
[1] Le L D, Tate J D, Seasholtz M B, Gupta M, Owano T, Baer D, Knittel T, Cowie A and Zhu J 2008 Appl. Spectrosc. 62 59 [2] Zheng K Y, Zheng C T, Yao D, Hu L E, Liu Z D, Li Y H, Zhang Y, Wang Y D and Tittel F K 2019 Analyst144 2003 [3] Centeno R, Mandon J, Cristescu S M and Harren F J M 2014 Sensor. Actuat. B-Chem. 203 311 [4] Wang K Y, Shao L G, Chen J J, Wang G S and Gao X M 2020 Sensors20 6192 [5] Wang J J, Tian X, Dong Y, Chen J J, Tan T, Zhu G D, Chen W D and Gao X M 2019 Opt. Lett. 44 3298 [6] Kaul D S, Zhi N, Westerdahl D, Yin X and Cary R A 2016 Aerosol Air Qual. Res. 16 1345 [7] Mahesh P, Sreenivas G, Rao P, Dadhwal V K, Krishna S and Mallikarjun K 2015 Int. J. Remote Sens. 36 5754 [8] Sayres D S, Moyer E J, Hanisco T F, Clair J M S, Keutsch F N, O'Brien A, Allen N T, Lapson L, Demusz J N, Rivero M, Martin T, Greenberg M, Tuozzolo C, Engel G S, Kroll J H, Paul J B and Anderson J G 2009 Rev. Sci. Instrum. 80 044102 [9] Silva M L, Sonnenfroh D M, Rosen D I, Allen M G and Keefe A O 2005 Appl. Phys. B81 705 [10] Bakhirkin Y A, Kosterev A A, Curl R F, Tittel F K, Yarekha D A, Hvozdara L, Giovannini M and Faist J 2006 Appl. Phys. B82 149 [11] Pal M, Bhattacharya S, Maity A, Chaudhuri S and Pradhan M 2020 Anal. Chem. 92 5717 [12] Wankel S D, Huang Y W, Gupta M, Provencal R and Girguis P R 2012 Environ. Sci. Technol. 47 1478 [13] Gonzalez-Valencia R, Magana-Rodriguez F, Gerardo-Nieto O, Sepulveda-Jauregui A, Martinez-Cruz K, Walter-Anthony K, Baer D and Thalasso F 2014 Environ. Sci. Technol. 48 11421 [14] Rodin A, Vinogradov I, Zenevich S, Spiridonov M, Gazizov I, Kazakov V, Meshcherinov V, Golovin I, Kozlova T, Lebedev Y, Malashevich S, Nosov A, Roste O, Venkstern A, Klimchuk A, Semenov V, Barke V, Durry G, Ghysels-Dubois M, Tepteeva E and Korablev O 2020 Appl. Sci. 10 2 [15] Arslanov D D, Cristescu S M and Harren F 2010 Opt. Lett. 35 3300 [16] Li Z Y and Wang H H 2009 Journal of Wuhan University of Technology31 42 [17] Li J S, Deng H, Sun J, Yu B L and Fischer H 2016 Sensor. Actuat. B231 723 [18] Cui H, Li B C, Han Y L, Wang J, Gao C and Wang Y F 2016 Opt. Express24 13343 [19] Stowasser C, Farinas A D, Ware J, Wistisen D W, Rella C, Wahl E, Crosson E and Blunier T 2014 Appl. Phys. B116 255 [20] Zybin A, Kuritsyn Y A, Mironenko V R and Niemax K 2004 Appl. Phys. B78 103 [21] Ciaffoni L, Couper J, Hancock G, Peverall R, Robbins P A and Ritchie G A D 2014 Opt. Express22 17030
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.