| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Molecular-dynamics simulations on the crystallization of Fe metallic glasses under alternating magnetic field |
| Yanxue Wu(吴言雪)1, Qiang-Qiang Pan(潘强强)1, Rui Ning(宁睿)1, and Hailong Peng(彭海龙)1,2,† |
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China; 2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
|
|
Abstract We performed the coupled molecular-dynamics and spin dynamics simulations to investigate the magnetic annealing effect on the crystallization behavior of Fe metallic glasses (MGs). By calculating the local five-fold symmetry, Voronoi polyhedron, and bond orientational order parameters, we find a significant structural evolution at high-frequency magnetic annealing: the icosahedral order diminishes, and the crystalline-like order is enhanced, comparing to the case without magnetic field. The fraction of the body-centered cubic structures remarkably increases with the frequency of magnetic annealing, and the atoms of these order show a tendency of aggregating in space to form the crystalline nuclei. These findings unveil how the local structure evolves under magnetic annealing, and the accelerated crystallization process of MGs through alternating magnetic fields.
|
Received: 12 March 2025
Revised: 08 April 2025
Accepted manuscript online: 10 April 2025
|
|
PACS:
|
64.70.pe
|
(Metallic glasses)
|
| |
61.43.-j
|
(Disordered solids)
|
|
| Fund: Project supported by the Scientific Research Foundation of the Education Department of Hunan Province, China (Grant No. 24A0007), the National Natural Science Foundation of China (Grant No. 52371168), and the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No. JCKYS2024120202). |
Corresponding Authors:
Hailong Peng
E-mail: hailong.peng@csu.edu.cn
|
Cite this article:
Yanxue Wu(吴言雪), Qiang-Qiang Pan(潘强强), Rui Ning(宁睿), and Hailong Peng(彭海龙) Molecular-dynamics simulations on the crystallization of Fe metallic glasses under alternating magnetic field 2025 Chin. Phys. B 34 076402
|
[1] Luo T, Huang M, Xu F, Liu H, Huang C, Yue G, Peng Z and Yang Y 2024 J. Non-Cryst. Solids 635 122988 [2] Herzer G 2013 Acta Mater. 61 718 [3] Azuma D, Ito N and Ohta M 2020 J. Magn. Magn. Mater. 501 166373 [4] Zhang Y, Tong X, Yan Y, Cao S, Ke H B and Wang W H 2024 Chin. Phys. B 33 108104 [5] Li W, Wang C, Li L, Zhang C, Ma J, Xi X, Tao K, Qiao J, Yuan C and Wang W 2025 Int. J. Mech. Sci. 287 109960 [6] Abrosimova G, Volkov N, Pershina E, Chirkova V, Sholin I and Aronin A 2021 J. Non-Cryst. Solids 565 120864 [7] Zhang X, Zhang F, Zhang J, Yu W, Zhang M, Zhao J, Liu R, Xu Y and Wang W 1998 J. Appl. Phys. 84 1918 [8] Xu J, Liu X, Wang Y, Wang G, Wang J, Zhou L and Yang Y 2021 J. Alloys Compd. 882 160746 [9] Xu J, Liu X, Wang Y, Shi Q, Wang J, Li K and Yang Y 2022 J. Alloys Compd. 902 163887 [10] Wang C, Wu Z, Feng X, Li Z, Gu Y, Zhang Y, Tan X and Xu H 2020 Intermetallics 118 106689 [11] Cheng Y and Ma E 2011 Prog. Mater. Sci. 56 379 [12] Suzuki K and Herzer G 2012 Scr. Mater. 67 548 [13] Hou L,Wang B, Liu L, Mao X, Zhang M, Yuan C, Li Z, JuW, Feng H, Tang C, Xia A and Li W 2024 J. Mater. Sci. Technol. 200 27 [14] Amirabadizadeh A, Mardani R and Ghanaatshoar M 2016 J. Alloys Compd. 661 501 [15] Li H, Wang A, Liu T, Chen P, He A, Li Q, Luan J and Liu C T 2021 Mater. Today 42 49 [16] Li X, Zhou J, Shen L, Sun B, Bai H and Wang W 2023 Adv. Mater. 35 2205863 [17] Shao L, Bai R, Wu Y, Zhou J, Tong X, Peng H, Liang T, Li Z, Zeng Q and Zhang B 2024 Mater. Futures 3 025301 [18] Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X and Guan P F 2022 J. Non-Cryst. Solids 576 121247 [19] Liang S, Zhang L, Wang Y, Wang B, Pelletier J and Qiao J 2024 Int. J. Fatigue 187 108446 [20] Zhang J, Zhou Z, Zhang Z, Park M, Yu Q, Li Z, Ma J, Wang A, Huang H and Song M 2022 Mater. Futures 1 012001 [21] Harizanova R, Mihailova I, Georgieva M, Tzankov D, Cherkezova- Zheleva Z, Paneva D, Avramova I, Karashanova D, Avdeev G and Gugov I 2024 J. Non-Cryst. Solids 634 122986 [22] Plimpton S 1995 J. Comput. Phys. 117 1 [23] Ma PW, Dudarev S L andWoo C H 2016 Comput. Phys. Commun. 207 350 [24] Tranchida J, Plimpton S J, Thibaudeau P and Thompson A P 2018 J. Comput. Phys. 372 406 [25] Nieves P, Tranchida J, Arapan S and Legut D 2021 Phys. Rev. B 103 094437 [26] Pajda M, Kudrnovský J, Turek I, Drchal V and Bruno P 2001 Phys. Rev. B 64 174402 [27] Tranchida J, Plimpton S J, Thibaudeau P and Thompson A P 2018 J. Comput. Phys. 372 406 [28] Garcí-Palacios J L and Lázaro F J 1998 Phys. Rev. B 58 14937 [29] Wallace D C, Sidles P and Danielson G 1960 J. Appl. Phys. 31 168 [30] Crangle J and Goodman G 1971 Proc. R. Soc. London, A 321 477 [31] Seki I and Nagata K 2005 ISIJ Int. 45 1789 [32] Basinski Z S, Hume-RotheryWand Sutton A 11955 Proc. R. Soc. London, A 229 459 [33] Touloukian Y S 1970 Thermophys. Prop. Mater. 4 83 [34] Chamati H, Papanicolaou N I, Mishin Y and Papaconstantopoulos D A 2006 Surf. Sci. 600 1793 [35] Kalb J, Spaepen F and Wuttig M 2003 J. Appl. Phys. 93 2389 [36] Da Silva J L, Walsh A, Wei S H and Lee H 2009 J. Appl. Phys. 106 113509 [37] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503 [38] Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T and Chen M 2011 Nat. Mater. 10 28 [39] Qiao Q, Wang J, Cai Z, Feng S, Song Z, Huo B, Li Z and Wang L M 2023 Chin. Phys. B 32 116401 [40] Ma L, Yang X D, Yang F, Zhou X J and Wu Z W 2024 Chin. Phys. B 33 036402 [41] Peng H, Li M and Wang W 2013 Appl. Phys. Lett. 102 131908 [42] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784 [43] Rycroft C H 2009 Chaos 19 041111 [44] Lechner W and Dellago C 2008 J. Chem. Phys. 129 114707 [45] Hu Y C and Tanaka H 2022 Nat. Commun. 13 4519 [46] Tong H, Tan P and Xu N 2015 Sci. Rep. 5 15378 [47] MickelW, Kapfer S C, Schröder-Turk G E and Mecke K 2013 J. Chem. Phys. 138 044501 [48] Leocmach M and Tanaka H 2012 Nat. Commun. 3 974 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|