Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 076402    DOI: 10.1088/1674-1056/adcb25
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular-dynamics simulations on the crystallization of Fe metallic glasses under alternating magnetic field

Yanxue Wu(吴言雪)1, Qiang-Qiang Pan(潘强强)1, Rui Ning(宁睿)1, and Hailong Peng(彭海龙)1,2,†
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract  We performed the coupled molecular-dynamics and spin dynamics simulations to investigate the magnetic annealing effect on the crystallization behavior of Fe metallic glasses (MGs). By calculating the local five-fold symmetry, Voronoi polyhedron, and bond orientational order parameters, we find a significant structural evolution at high-frequency magnetic annealing: the icosahedral order diminishes, and the crystalline-like order is enhanced, comparing to the case without magnetic field. The fraction of the body-centered cubic structures remarkably increases with the frequency of magnetic annealing, and the atoms of these order show a tendency of aggregating in space to form the crystalline nuclei. These findings unveil how the local structure evolves under magnetic annealing, and the accelerated crystallization process of MGs through alternating magnetic fields.
Keywords:  metallic glasses      magnetic annealing      crystallization behavior  
Received:  12 March 2025      Revised:  08 April 2025      Accepted manuscript online:  10 April 2025
PACS:  64.70.pe (Metallic glasses)  
  61.43.-j (Disordered solids)  
Fund: Project supported by the Scientific Research Foundation of the Education Department of Hunan Province, China (Grant No. 24A0007), the National Natural Science Foundation of China (Grant No. 52371168), and the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No. JCKYS2024120202).
Corresponding Authors:  Hailong Peng     E-mail:  hailong.peng@csu.edu.cn

Cite this article: 

Yanxue Wu(吴言雪), Qiang-Qiang Pan(潘强强), Rui Ning(宁睿), and Hailong Peng(彭海龙) Molecular-dynamics simulations on the crystallization of Fe metallic glasses under alternating magnetic field 2025 Chin. Phys. B 34 076402

[1] Luo T, Huang M, Xu F, Liu H, Huang C, Yue G, Peng Z and Yang Y 2024 J. Non-Cryst. Solids 635 122988
[2] Herzer G 2013 Acta Mater. 61 718
[3] Azuma D, Ito N and Ohta M 2020 J. Magn. Magn. Mater. 501 166373
[4] Zhang Y, Tong X, Yan Y, Cao S, Ke H B and Wang W H 2024 Chin. Phys. B 33 108104
[5] Li W, Wang C, Li L, Zhang C, Ma J, Xi X, Tao K, Qiao J, Yuan C and Wang W 2025 Int. J. Mech. Sci. 287 109960
[6] Abrosimova G, Volkov N, Pershina E, Chirkova V, Sholin I and Aronin A 2021 J. Non-Cryst. Solids 565 120864
[7] Zhang X, Zhang F, Zhang J, Yu W, Zhang M, Zhao J, Liu R, Xu Y and Wang W 1998 J. Appl. Phys. 84 1918
[8] Xu J, Liu X, Wang Y, Wang G, Wang J, Zhou L and Yang Y 2021 J. Alloys Compd. 882 160746
[9] Xu J, Liu X, Wang Y, Shi Q, Wang J, Li K and Yang Y 2022 J. Alloys Compd. 902 163887
[10] Wang C, Wu Z, Feng X, Li Z, Gu Y, Zhang Y, Tan X and Xu H 2020 Intermetallics 118 106689
[11] Cheng Y and Ma E 2011 Prog. Mater. Sci. 56 379
[12] Suzuki K and Herzer G 2012 Scr. Mater. 67 548
[13] Hou L,Wang B, Liu L, Mao X, Zhang M, Yuan C, Li Z, JuW, Feng H, Tang C, Xia A and Li W 2024 J. Mater. Sci. Technol. 200 27
[14] Amirabadizadeh A, Mardani R and Ghanaatshoar M 2016 J. Alloys Compd. 661 501
[15] Li H, Wang A, Liu T, Chen P, He A, Li Q, Luan J and Liu C T 2021 Mater. Today 42 49
[16] Li X, Zhou J, Shen L, Sun B, Bai H and Wang W 2023 Adv. Mater. 35 2205863
[17] Shao L, Bai R, Wu Y, Zhou J, Tong X, Peng H, Liang T, Li Z, Zeng Q and Zhang B 2024 Mater. Futures 3 025301
[18] Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X and Guan P F 2022 J. Non-Cryst. Solids 576 121247
[19] Liang S, Zhang L, Wang Y, Wang B, Pelletier J and Qiao J 2024 Int. J. Fatigue 187 108446
[20] Zhang J, Zhou Z, Zhang Z, Park M, Yu Q, Li Z, Ma J, Wang A, Huang H and Song M 2022 Mater. Futures 1 012001
[21] Harizanova R, Mihailova I, Georgieva M, Tzankov D, Cherkezova- Zheleva Z, Paneva D, Avramova I, Karashanova D, Avdeev G and Gugov I 2024 J. Non-Cryst. Solids 634 122986
[22] Plimpton S 1995 J. Comput. Phys. 117 1
[23] Ma PW, Dudarev S L andWoo C H 2016 Comput. Phys. Commun. 207 350
[24] Tranchida J, Plimpton S J, Thibaudeau P and Thompson A P 2018 J. Comput. Phys. 372 406
[25] Nieves P, Tranchida J, Arapan S and Legut D 2021 Phys. Rev. B 103 094437
[26] Pajda M, Kudrnovský J, Turek I, Drchal V and Bruno P 2001 Phys. Rev. B 64 174402
[27] Tranchida J, Plimpton S J, Thibaudeau P and Thompson A P 2018 J. Comput. Phys. 372 406
[28] Garcí-Palacios J L and Lázaro F J 1998 Phys. Rev. B 58 14937
[29] Wallace D C, Sidles P and Danielson G 1960 J. Appl. Phys. 31 168
[30] Crangle J and Goodman G 1971 Proc. R. Soc. London, A 321 477
[31] Seki I and Nagata K 2005 ISIJ Int. 45 1789
[32] Basinski Z S, Hume-RotheryWand Sutton A 11955 Proc. R. Soc. London, A 229 459
[33] Touloukian Y S 1970 Thermophys. Prop. Mater. 4 83
[34] Chamati H, Papanicolaou N I, Mishin Y and Papaconstantopoulos D A 2006 Surf. Sci. 600 1793
[35] Kalb J, Spaepen F and Wuttig M 2003 J. Appl. Phys. 93 2389
[36] Da Silva J L, Walsh A, Wei S H and Lee H 2009 J. Appl. Phys. 106 113509
[37] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[38] Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T and Chen M 2011 Nat. Mater. 10 28
[39] Qiao Q, Wang J, Cai Z, Feng S, Song Z, Huo B, Li Z and Wang L M 2023 Chin. Phys. B 32 116401
[40] Ma L, Yang X D, Yang F, Zhou X J and Wu Z W 2024 Chin. Phys. B 33 036402
[41] Peng H, Li M and Wang W 2013 Appl. Phys. Lett. 102 131908
[42] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[43] Rycroft C H 2009 Chaos 19 041111
[44] Lechner W and Dellago C 2008 J. Chem. Phys. 129 114707
[45] Hu Y C and Tanaka H 2022 Nat. Commun. 13 4519
[46] Tong H, Tan P and Xu N 2015 Sci. Rep. 5 15378
[47] MickelW, Kapfer S C, Schröder-Turk G E and Mecke K 2013 J. Chem. Phys. 138 044501
[48] Leocmach M and Tanaka H 2012 Nat. Commun. 3 974
[1] Optimization of glass-forming ability and synergistic enhancement of strength plasticity in Cu50Zr46Al4 metallic glasses through Ag additions
Dongmei Li(李冬梅), Zhongyi Zhang(张忠一), Bolin Shang(尚博林), Rui Feng(丰睿), Xuefeng Li(李雪枫), and Peng Yu(余鹏). Chin. Phys. B, 2025, 34(8): 086107.
[2] Coupling of quasi-localized and phonon modes in glasses at low frequency
Jun Duan(段军), Song-Lin Cai(蔡松林), Gan Ding(丁淦), Lan-Hong Dai(戴兰宏), and Min-Qiang Jiang(蒋敏强). Chin. Phys. B, 2024, 33(5): 056502.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[5] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[6] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[7] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[8] Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective
Shaoqin Jiang(江少钦), Yong Huang(黄勇), Maozhi Li(李茂枝). Chin. Phys. B, 2019, 28(4): 046103.
[9] Ab initio molecular dynamics study on the local structures in Ce70Al30 and La70Al30 metallic glasses
F X Li(李福祥), J B Kong(孔吉波), M Z Li(李茂枝). Chin. Phys. B, 2018, 27(5): 056102.
[10] LaGa-based bulk metallic glasses
Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋). Chin. Phys. B, 2017, 26(1): 018106.
[11] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[12] Amorphous phase formation rules in high-entropy alloys
Qiu-Wei Xing(邢秋玮), Yong Zhang(张勇). Chin. Phys. B, 2017, 26(1): 018104.
[13] Generalized model for laser-induced surface structure in metallic glass
Lin-Mao Ye(叶林茂), Zhen-Wei Wu(武振伟), Kai-Xin Liu(刘凯欣), Xiu-Zhang Tang(汤秀章), Xiang-Ming Xiong (熊向明). Chin. Phys. B, 2016, 25(6): 068104.
[14] Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field
Ning Shuai (宁帅), Zhan Peng (战鹏), Wang Wei-Peng (王炜鹏), Li Zheng-Cao (李正操), Zhang Zheng-Jun (张政军). Chin. Phys. B, 2014, 23(12): 127503.
[15] Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs):A molecular dynamics approach
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Yongqing Cai, S. A. Ahmad. Chin. Phys. B, 2013, 22(9): 096101.
No Suggested Reading articles found!