Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 126402    DOI: 10.1088/1674-1056/adea5d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Atypical homogeneous rheology of a high-entropy metallic glass challenges standard free volume models

Guanghui Xing(邢光辉)1, Bletry Marc2,†, Mottelet Stephane3, and Jichao Qiao(乔吉超)1
1 School of Mechanics and Transportation Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2 PCM2E EA 6299, Université de Tours, Parc de Grandmont, Tours 37200, France;
3 TIMR (Integrated Transformations of Renewable Matter), Université de Technologie de Compiègne, ESCOM, Centre de Recherches Royallieu, Compi`egne 60203, France
Abstract  Metallic glasses (MGs) exhibit exceptional mechanical properties, but their application is often limited by brittleness. At elevated temperatures near the glass transition (Tg), they undergo homogeneous viscoplastic deformation, a regime commonly described using free volume (FV) theory. Despite its prevalence, the quantitative accuracy and applicability of FV models, particularly for transient behaviors, remain under investigation. This study examines the homogeneous rheology of a LaCeYNiAl high-entropy MG (HEMG) between 475 K and 490 K, and critically assesses the relevance of two prominent FV model formulations. Experimental characterization includes dynamic mechanical analysis and uniaxial tensile tests across various strain rates. The tensile data are subsequently analyzed using two elasto-viscoplastic constitutive frameworks incorporating distinct FV evolution kinetics: Spaepen’s original formulation (model 1), and the bimolecular annihilation kinetics proposed by Van den Beukel/Sietsma (model 2). Our analysis reveals that model 1, when applied to steady-state flow, yields physically inconsistent negative parameters, calling its validity for homogeneous deformation into question. Model 2 demonstrates better qualitative agreement with the experimental stress-strain curves but still fails to accurately reproduce the stress overshoot features. Moreover, fitting model 2 requires unphysically low Young’s modulus values and produces unusual negative apparent activation energies for key kinetic parameters, suggesting limitations in the model structure (e.g., neglecting explicit viscoelasticity) or possibly unique behavior in HEMGs. These findings highlight significant shortcomings of standard FV models in quantitatively capturing the homogeneous deformation of this HEMG, particularly its transient characteristics, and underscore the need for more refined constitutive descriptions.
Keywords:  high entropy metallic glasses      rheology      constitutive modeling      free-volume theory  
Received:  19 May 2025      Revised:  20 June 2025      Accepted manuscript online:  01 July 2025
PACS:  64.70.pe (Metallic glasses)  
  66.20.Cy (Theory and modeling of viscosity and rheological properties, including computer simulation)  
  62.20.-x (Mechanical properties of solids)  
  02.30.Hq (Ordinary differential equations)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 52271153 and 12472069) and the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province (Grant No. 2021JC-12).
Corresponding Authors:  Bletry Marc     E-mail:  mbl@univ-tours.fr

Cite this article: 

Guanghui Xing(邢光辉), Bletry Marc, Mottelet Stephane, and Jichao Qiao(乔吉超) Atypical homogeneous rheology of a high-entropy metallic glass challenges standard free volume models 2025 Chin. Phys. B 34 126402

[1] Hufnagel T, Schuh C and Falk M 2016 Acta Mater. 109 375
[2] Trexler M and Thadhani N 2010 Prog. Mater. Sci. 55 759
[3] Schuh C, Hufnagel T and Ramamurty U 2007 Acta Mater. 55 4067
[4] Qiao J, Wang Q, Pelletier J, Kato H, Casalini R, Crespo D, Pineda E, Yao Y and Yang Y 2019 Prog. Mater. Sci. 104 250
[5] Wang W 2019 Prog. Mater. Sci. 106 100561
[6] Wang Y, Liu J, Jiang J and Cai W 2024 Nat. Commun. 15 171
[7] Sopu D, Stukowski A, Stoica M and Scudino S 2017 Phys. Rev. Lett. 119 195503
[8] Cheng Y T, Hao Q, Pelletier J M, Pineda E and Qiao J C 2021 Int. J. Plast. 146 103107
[9] Cohen M and Turnbull D 1959 J. Chem. Phys. 31 1164
[10] Cohen M and Turnbull D 1961 J. Chem. Phys. 34 120
[11] Taub A and Spaepen F 1980 Acta Metall. 28 1781
[12] Spaepen F 1977 Acta Metall. 25 407
[13] De Hey P, Sietsma J and Van Den Beukel A 1998 Acta Mater. 46 5873
[14] van Aken B, de Hey P and Sietsma J 2000 Mater. Sci. Eng. A 278 247
[15] Sietsma J and Thijsse B J 1995 Phys. Rev. B 52 3248
[16] Bletry M, Guyot P, Blandin J and Soubeyroux J 2006 Acta Mater. 54 1257
[17] Bletry M, Brechet Y, Guyot P, Blandin J and Soubeyroux J 2007 Acta Mater. 55 6331
[18] Gao Y F, Yang B and Nieh T G 2007 Acta Mater. 55 2319
[19] Anand L and Su C 2007 Acta Mater. 55 3735
[20] Zhang H, Wang Z, Yang H J, Shi X H, Liaw P K and Qiao J W 2023 Scr. Mater. 222 115047
[21] Zhu W, Liu J, Mao S and Wei X 2021 J. Mech. Phys. Solids 146 104216
[22] Stolpe M, Kruzic J J and Busch R 2014 Acta Mater. 64 231
[23] Lee S, Han G, Marimuthu K P and Lee H 2024 J. Non-Cryst. Solids 624 122695
[24] Huang B, Tang X C, Geng C, He Q F, Yi J, Wang Q, Huang W X, Yuan Q X, Yang Y, Wang G and Wang W H 2023 Mater. Sci. Eng. A 869 144726
[25] Chen S, Xu D, Zhang X, Chen X, Liu Y, Liang T, Yin Z, Jiang S, Yang K, Zeng J, Lou H, Zeng Z and Zeng Q 2022 Phys. Rev. B 105 144201
[26] Zhu F, Song S, Reddy K M, Hirata A and Chen M 2018 Nat. Commun. 9 3965
[27] Ge J, Luo P, Wu Z, Zhang W, Liu S, Lan S, Almer J D, Ren Y, Wang X L and Wang W 2023 Mater. Res. Lett. 11 547
[28] Duan Y J, Nabahat M, Tong Y, Ortiz-Membrado L, Jimenez-Piqué E, Zhao K, Wang Y J, Yang Y, Wada T, Kato H, Pelletier J M, Qiao J C and Pineda E 2024 Phys. Rev. Lett. 132 056101
[29] Song J, Zhu W and Wei X 2021 Int. J. Mech. Sci. 204 106570
[30] Jiang W and Zhang B 2020 J. Appl. Phys. 127 115104
[31] Xing G, Hao Q, Zhu F, Wang Y J, Yang Y, Kato H, Pineda E, Lan S and Qiao J 2024 Sci. China Phys. Mech. Astron. 67 256111
[32] Mauro J C, Yue Y, Ellison A J, Gupta P K and Allan D C 2009 Proc. Natl. Acad. Sci. USA 106 19780
[33] Gallino I 2017 Entropy 19 483
[34] Sarac B and Eckert J 2022 Prog. Mater. Sci. 127 100941
[35] Kauzmann W 1941 Trans. Am. Inst. Min. Metall. Eng. 143 57
[36] Argon A 1979 Acta Metall. 27 47
[37] Zhu A, Shiflet G J and Poon S J 2010 Phys. Rev. B 81 224209
[38] van den Beukel A and Sietsma J 1990 Philos. Mag. B 61 539
[39] Tsao S and Spaepen F 1985 Acta Metall. 33 881
[40] Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y and Qiao J C 2024 Int. J. Plast. 175 103926
[41] Bletry M, Thai M T, Champion Y, Perriere L and Ochin P 2014 C. R. Mec. =342 311
[42] Huang R, Suo Z, Prevost J H and Nix W D 2002 J. Mech. Phys. Solids 50 1011
[43] Gao Y F 2006 Model. Simul. Mater. Sci. Eng. 14 1329
[44] Jiang M Q and Dai L H 2009 J. Mech. Phys. Solids 57 1267
[45] Li J C, Wei Q, Chen X W and Huang F L 2014 Mater. Sci. Eng. A 610 91
[46] Lu J, Ravichandran G and Johnson W L 2003 Acta Mater. 51 3429
[47] Hindmarsh A C, Brown P N, Grant K E, Lee S L, Serban R, Shumaker D E and Woodward C S 2005 ACM Trans. Math. Softw. 31 363
[48] Wachter A and Biegler L T 2006 Math. Program. 106 25
[49] Scilab Team 2024 Scilab: Open source software for numerical computation Computer Software
[50] Squire W and Trapp G 1998 SIAM Rev. 40 110
[51] Ljung L 1998 System Identification in Signal Analysis and Prediction (Boston, MA: Birkhauser Boston) pp. 163–173
[52] Duine P A, Sietsma J and Van den Beukel A 1992 Acta Metall. Mater. 40 743
[53] Kassner M E 2015 Fundamentals of Creep in Metals and Alloys (Third Edition) (Butterworth-Heinemann)
[54] Gottstein G 2004 Physical Foundations of Materials Science (Springer)
[55] Lee K S, Eckert J and Chang Y W 2007 J. Non-Cryst. Solids 353 2515
[56] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A and Wang W H 2013 Appl. Phys. Lett. 102 101903
[57] Duan Y J, Zhang L T, Wada T, Kato H, Pineda E, Crespo D, Pelletier J M and Qiao J C 2022 J. Mater. Sci. Technol. 107 82
[58] Cui J B, Lyu G J, Hao Q, Zhu F, Khonik V A, Duan Y J, Wada T, Kato H and Qiao J C 2024 Mech. Mater. 196 105078
[1] Shear rheology of confined double rings of dust particles in a dusty plasma
Miao Tian(田淼), Jiaqi Li(李佳琪), Xuebo Yu(于雪波), Xue Liu(刘雪), Shaopeng Li(李绍鹏), Qing Li(李庆), Fucheng Liu(刘富成), and Yafeng He(贺亚峰). Chin. Phys. B, 2024, 33(12): 125201.
[2] Transport coefficients and mechanical response in hard-disk colloidal suspensions
Bo-Kai Zhang(张博凯), Jian Li(李健), Kang Chen(陈康), Wen-De Tian(田文得), Yu-Qiang Ma(马余强). Chin. Phys. B, 2016, 25(11): 116101.
[3] A dynamic rheological model for thin-film lubrication
Zhang Xiang-Jun (张向军), Huang Ying (黄颖), Guo Yan-Bao (郭岩宝), Tian Yu (田煜), Meng Yong-Gang (孟永钢). Chin. Phys. B, 2013, 22(1): 016202.
No Suggested Reading articles found!