Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017205    DOI: 10.1088/1674-1056/acf9e4
Special Issue: SPECIAL TOPIC — Valleytronics
SPECIAL TOPIC—Valleytronics Prev   Next  

Valley-dependent transport in a mescoscopic twisted bilayer graphene device

Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军)
School of Physics, Southeast University, Nanjing 210096, China
Abstract  We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene.
Keywords:  twisted bilayer graphene      valley-dependent transport      graphene nanoribbon      conductance  
Received:  27 June 2023      Revised:  10 September 2023      Accepted manuscript online:  15 September 2023
PACS:  72.80.Vp (Electronic transport in graphene)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  71.70.Fk (Strain-induced splitting)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174051 and 11874221).
Corresponding Authors:  Han-Lin Liu     E-mail:  230228533@seu.edu.cn

Cite this article: 

Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军) Valley-dependent transport in a mescoscopic twisted bilayer graphene device 2024 Chin. Phys. B 33 017205

[1] Bistritzer R and MacDonald A H 2010 Phys. Rev. B 81 245412
[2] San-Jose P, Gonzalez J and Guinea F 2012 Phys. Rev. Lett. 108 216802
[3] Lopes Dos Santos J M, Peres N M and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802
[4] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J and Tutuc E 2016 Nano Lett. 16 1989
[5] Sürez Morell E, Correa J D, Vargas P, Pacheco M and Barticevic Z 2010 Phys. Rev. B 82 121407
[6] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653
[7] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[9] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N 2019 Nature 572 95
[10] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y 2019 Nature 573 91
[11] Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2019 Nature 572 101
[12] Sboychakov A O, Rakhmanov A L, Rozhkov A V and Nori F 2015 Phys. Rev. B 92 075402
[13] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[14] Codecido E, Wang Q Y, Koester R, Che S, Tian H D, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, Bockrath M and Lau C N 2019 Sci. Adv. 5 eaaw9770
[15] Huang S, Kim K, Efimkin D K, Lovorn T, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E and LeRoy B J 2018 Phys. Rev. Lett. 121 037702
[16] Rickhaus P, Wallbank J, Slizovskiy S, Pisoni R, Overweg H, Lee Y, Eich M, Liu M H, Watanabe K, Taniguchi T, Ihn T and Ensslin K 2018 Nano Lett. 18 6725
[17] Schmidt H, Rode J C, Smirnov D and Haug R J 2014 Nat. Commun. 5 5742
[18] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H and Tutuc E 2017 Proc. Natl. Acad. Sci. USA 114 3364
[19] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605
[20] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T and Nadj-Perge S 2019 Nat. Phys. 15 1174
[21] Zhang Y H, Mao D and Senthil T 2019 Phys. Rev. Res. 1 033126
[22] Bernevig B A, Song Z D, Regnault N and Lian B 2021 Phys. Rev. B 103 205411
[23] Li Z, Chan H C and Xiang Y 2020 Phys. Rev. B 102 245149
[24] de Paz M B, Vergniory M G, Bercioux D, Garcä-Etxarri A and Bradlyn B 2019 Phys. Rev. Res. 1 032005
[25] Liu H L and Wang J 2023 Phys. Rev. B 107 125412
[26] Andelković M, Covaci L and Peeters F M 2018 Phys. Rev. Mater. 2 034004
[27] Yan W, Meng L, Liu M, Qiao J B, Chu Z D, Dou R F, Liu Z, Nie J C, Naugle D G and He L 2014 Phys. Rev. B 90 115402
[28] Olyaei H Z, Amorim B, Ribeiro P and Castro E V 2020 arXiv:2007.14498
[29] Bahamon D A, Gomez-Santos G and Stauber T 2020 Nanoscale 12 15383
[30] Han Y, Zeng J, Ren Y, Dong X, Ren W and Qiao Z 2020 Phys. Rev. B 101 235432
[31] Hou T, Ren Y, Quan Y, Jung J, Ren W and Qiao Z 2020 Phys. Rev. B 102 085433
[32] De Beule C, Silvestrov P G, Liu M H and Recher P 2020 Phys. Rev. Res. 2 043151
[33] Alvarado M and Yeyati A L 2021 Phys. Rev. B 104 075406
[34] Pelc M, Morell E S, Brey L and Chico L 2015 J. Phys. Chem. C 119 10076
[35] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087
[36] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435
[37] Po H C, Zou L, Senthil T and Vishwanath A 2019 Phys. Rev. B 99 195455
[38] Trambly de Laissardire G, Mayou D and Magaud L 2012 Phys. Rev. B 86 125413
[39] Nguyen V H, Hoang T X and Charlier J C 2022 J. Phys.:Mater. 5 034003
[40] Wang J J, Liu S, Wang J and Liu J F 2017 Sci. Rep. 7 10236
[41] Yan W, Liu M, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y, Liu Z, Nie J C and He L 2012 Phys. Rev. Lett. 109 126801
[42] Ohta T, Robinson J T, Feibelman P J, Bostwick A, Rotenberg E and Beechem T E 2012 Phys. Rev. Lett. 109 186807
[43] Kim Y, Herlinger P, Moon P, Koshino M, Taniguchi T, Watanabe K and Smet J H 2016 Nano Lett. 16 5053
[44] Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2009 Nat. Phys. 6 109
[1] Helicity-dependent photoconductance of the edge states in the topological insulator Bi2Te3
Yuchao Zhou(周宇超), Jinling Yu(俞金玲), Yonghai Chen(陈涌海), Yunfeng Lai(赖云锋), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(8): 087102.
[2] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[6] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[7] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[8] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[9] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[10] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[11] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[12] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[13] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[14] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[15] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
No Suggested Reading articles found!