Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Valley-dependent transport in a mescoscopic twisted bilayer graphene device |
Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林)†, and Jun Wang(汪军) |
School of Physics, Southeast University, Nanjing 210096, China |
|
|
Abstract We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene.
|
Received: 27 June 2023
Revised: 10 September 2023
Accepted manuscript online: 15 September 2023
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
71.70.Fk
|
(Strain-induced splitting)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174051 and 11874221). |
Corresponding Authors:
Han-Lin Liu
E-mail: 230228533@seu.edu.cn
|
Cite this article:
Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军) Valley-dependent transport in a mescoscopic twisted bilayer graphene device 2024 Chin. Phys. B 33 017205
|
[1] Bistritzer R and MacDonald A H 2010 Phys. Rev. B 81 245412 [2] San-Jose P, Gonzalez J and Guinea F 2012 Phys. Rev. Lett. 108 216802 [3] Lopes Dos Santos J M, Peres N M and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802 [4] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J and Tutuc E 2016 Nano Lett. 16 1989 [5] Sürez Morell E, Correa J D, Vargas P, Pacheco M and Barticevic Z 2010 Phys. Rev. B 82 121407 [6] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 [7] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [9] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N 2019 Nature 572 95 [10] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y 2019 Nature 573 91 [11] Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2019 Nature 572 101 [12] Sboychakov A O, Rakhmanov A L, Rozhkov A V and Nori F 2015 Phys. Rev. B 92 075402 [13] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [14] Codecido E, Wang Q Y, Koester R, Che S, Tian H D, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, Bockrath M and Lau C N 2019 Sci. Adv. 5 eaaw9770 [15] Huang S, Kim K, Efimkin D K, Lovorn T, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E and LeRoy B J 2018 Phys. Rev. Lett. 121 037702 [16] Rickhaus P, Wallbank J, Slizovskiy S, Pisoni R, Overweg H, Lee Y, Eich M, Liu M H, Watanabe K, Taniguchi T, Ihn T and Ensslin K 2018 Nano Lett. 18 6725 [17] Schmidt H, Rode J C, Smirnov D and Haug R J 2014 Nat. Commun. 5 5742 [18] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H and Tutuc E 2017 Proc. Natl. Acad. Sci. USA 114 3364 [19] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 [20] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T and Nadj-Perge S 2019 Nat. Phys. 15 1174 [21] Zhang Y H, Mao D and Senthil T 2019 Phys. Rev. Res. 1 033126 [22] Bernevig B A, Song Z D, Regnault N and Lian B 2021 Phys. Rev. B 103 205411 [23] Li Z, Chan H C and Xiang Y 2020 Phys. Rev. B 102 245149 [24] de Paz M B, Vergniory M G, Bercioux D, Garcä-Etxarri A and Bradlyn B 2019 Phys. Rev. Res. 1 032005 [25] Liu H L and Wang J 2023 Phys. Rev. B 107 125412 [26] Andelković M, Covaci L and Peeters F M 2018 Phys. Rev. Mater. 2 034004 [27] Yan W, Meng L, Liu M, Qiao J B, Chu Z D, Dou R F, Liu Z, Nie J C, Naugle D G and He L 2014 Phys. Rev. B 90 115402 [28] Olyaei H Z, Amorim B, Ribeiro P and Castro E V 2020 arXiv:2007.14498 [29] Bahamon D A, Gomez-Santos G and Stauber T 2020 Nanoscale 12 15383 [30] Han Y, Zeng J, Ren Y, Dong X, Ren W and Qiao Z 2020 Phys. Rev. B 101 235432 [31] Hou T, Ren Y, Quan Y, Jung J, Ren W and Qiao Z 2020 Phys. Rev. B 102 085433 [32] De Beule C, Silvestrov P G, Liu M H and Recher P 2020 Phys. Rev. Res. 2 043151 [33] Alvarado M and Yeyati A L 2021 Phys. Rev. B 104 075406 [34] Pelc M, Morell E S, Brey L and Chico L 2015 J. Phys. Chem. C 119 10076 [35] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087 [36] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435 [37] Po H C, Zou L, Senthil T and Vishwanath A 2019 Phys. Rev. B 99 195455 [38] Trambly de Laissardire G, Mayou D and Magaud L 2012 Phys. Rev. B 86 125413 [39] Nguyen V H, Hoang T X and Charlier J C 2022 J. Phys.:Mater. 5 034003 [40] Wang J J, Liu S, Wang J and Liu J F 2017 Sci. Rep. 7 10236 [41] Yan W, Liu M, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y, Liu Z, Nie J C and He L 2012 Phys. Rev. Lett. 109 126801 [42] Ohta T, Robinson J T, Feibelman P J, Bostwick A, Rotenberg E and Beechem T E 2012 Phys. Rev. Lett. 109 186807 [43] Kim Y, Herlinger P, Moon P, Koshino M, Taniguchi T, Watanabe K and Smet J H 2016 Nano Lett. 16 5053 [44] Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2009 Nat. Phys. 6 109 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|