Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057801    DOI: 10.1088/1674-1056/ac80af
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical investigation on the fluorescent sensing mechanism for recognizing formaldehyde: TDDFT calculation and excited-state nonadiabatic dynamics

Yunfan Yang(杨云帆)1,3,†, Lujia Yang(杨璐佳)1, Fengcai Ma(马凤才)2, Yongqing Li(李永庆)2,‡, and Yue Qiu(邱岳)4
1 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
2 Department of Physics, Liaoning University, Shenyang 110036, China;
3 State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
4 Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts University of Melbourne, Parkville, VIC 3052, Australia
Abstract  Inspired by the activity-based sensing method, the hydrazine-modified naphthalene derivative (Naph1) was synthesized and used as a fluorescent probe to detect formaldehyde (FA) in living cells. Through the condensation reaction between the probe Naph1 and analyte FA, researchers observed a ~ 14 folds enhancement of fluorescent signal around 510 nm in an experiment, realizing the high selectivity and sensitivity detection of FA. However, a theoretical understanding of the sensing mechanism was not provided in the experimental work. Given this, the light-up fluorescent detecting mechanism was in-depth unveiled by performing the time-dependent density functional theory (TDDFT) and the complete active space self-consistent field (CASSCF) theoretical calculations on excited-state intramolecular proton transfer (ESIPT) and non-adiabatic excited-state dynamics simulation. The deactivation channel of S1/T2 intersystem crossing (ISC) was turned off to successfully recognize FA. Insight into the ESIPT-based fluorescent detecting mechanism indicated that ESIPT was essential to light-up fluorescent probes. This work would provide a new viewpoint to develop ESIPT-based fluorescent probes for detecting reactive carbon species in vivo or vitio.
Keywords:  proton transfer      twisting intramolecular charge transfer      intersystem crossing      fluorescent probe  
Received:  02 June 2022      Revised:  29 June 2022      Accepted manuscript online:  13 July 2022
PACS:  78.47.da (Excited states)  
  33.15.Hp (Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))  
  87.15.ht (Ultrafast dynamics; charge transfer)  
  33.20.-t (Molecular spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104392); the Natural Science Foundation of Hebei Province, China (Grant No. B2021203017); the High-Level Innovative Talents Program of Shenyang City (Grant No. RC200565); and the Innovation Capability Improvement Project of Hebei Province, China (Grant No. 22567605H). The numerical calculations in this paper have been done on the supercomputing system in the High-Performance Computing Center of Yanshan University.
Corresponding Authors:  Yunfan Yang, Yongqing Li     E-mail:  yangyunfan2626@163.com;yqli@lnu.edu.cn

Cite this article: 

Yunfan Yang(杨云帆), Lujia Yang(杨璐佳), Fengcai Ma(马凤才), Yongqing Li(李永庆), and Yue Qiu(邱岳) Theoretical investigation on the fluorescent sensing mechanism for recognizing formaldehyde: TDDFT calculation and excited-state nonadiabatic dynamics 2023 Chin. Phys. B 32 057801

[1] Ariyageadsakul P, Vchirawongkwin V and Kritayakornupong C 2016 Sensor Actuat. B-Chem. 232 165
[2] Jass H E 1985 History and Status of Formaldehyde in the Cosmetics Industry (Advances in Chemistry of ACS Publications) pp. 229-236
[3] Meyer B and Hermanns K 1985 Formaldehyde Release from Pressed Wood Products (Advances in Chemistry of ACS Publications) pp. 101-116
[4] Scheuplein R J 1985 Formaldehyde: The Food and Drug Administration's Perspective (Advances in Chemistry of ACS Publications) pp. 237-245
[5] Organization W H, Formaldehyde, World Health Organization, 1989
[6] Tang X, Bai Y, Duong A, Smith M T, Li L and Zhang L 2009 Environ. Int. 35 1210
[7] Tsukada Y I, Fang J, Erdjument-Bromage H, Warren M E, Borchers C H, Tempst P and Zhang Y 2006 Nature 439 811
[8] Lu K, Craft S, Nakamura J, Moeller B C and Swenberg J A 2012 Chem. Res. Toxicol. 25 664
[9] Merk O and Speit G 1998 Environ. Mol. Mutagen. 32 260
[10] Zhao X Q and Zhang Z Q 2009 Talanta 80 242
[11] Li F X, Lu J, Xu Y J, Tong Z Q, Me C L and He R Q 2008 Prog. Biochem. Biophys. 35 393
[12] Kowatsch S Formaldehyde in: Phenolic Resins: A Century of Progress, Springer Inc, 2010, pp. 25-40
[13] Ohata J, Bruemmer K J and Chang C J 2019 Accounts Chem. Res. 52 2841
[14] Liu X, Li N, Li M, Chen H, Zhang N, Wang Y and Zheng K 2020 Coordin. Chem. Rev. 404 213109
[15] Chen W, Yang M, Luo N, Wang F, Yu R Q and Jiang J H 2019 Analyst 144 6922
[16] He L, Yang X, Ren M, Kong X, Liu Y and Lin W 2016 Chem. Comm. 52 9582
[17] Chang C J, James T D, New E J and Tang B Z 2020 Accounts Chem. Res. 53 1
[18] Zhang H, Shao Z and Zhao K 2020 Chin. Phys. B 29 083304
[19] Zhao J, Ji S, Chen Y, Guo H and Yang P 2012 Phys. Chem. Chem. Phys. 14 8803
[20] Li G Y and Han K L 2018 WIRES Comput. Mol. Sci. 8 e1351
[21] Zheng J J, Lu Y Q, Li P L and Chen T 2010 Acta Phys. Sin. 59 6626 (in Chinese)
[22] Song Y, Liu S, Lu J, Zhang H, Zhang C and Du J 2019 Chin. Phys. B 28 093102
[23] Li Y Q, Ma Y Z, Yang Y F, Shi W, Lan R F and Guo Q 2018 Phys. Chem. Chem. Phys. 20 4208
[24] Yang Y, Ding Y, Shi W, Ma F and Li Y 2020 J. Lumin. 218 116836
[25] Zhao J and Jin B 2021 J. Lumin. 232 117800
[26] Zhao J, Li Z and Jin B 2021 J. Lumin. 238 118231
[27] Niu Y, Wang R, Shao P, Wang Y and Zhang Y 2018 Chem. Eur. J. 24 16670
[28] Nagaoka S I, Endo H, Ohara K and Nagashima U 2015 J. Phys. Chem. B 119 2525
[29] Tseng H W, Liu J Q, Chen Y A, Chao C M, Liu K M, Chen C L, Lin T C, Hung C H, Chou Y L, Wang T L and Chou P T 2015 J. Phys. Chem. Lett. 6 1477
[30] Nagaoka S I, Nakamura A and Nagashima U 2002 J. Photoch. Photobio. A 154 23
[31] Yang Y G, Liu Y F, Yang D P, Li H, Jiang K and Sun J F 2015 Spectrochim. Acta A 151 814
[32] Sun C, Cao B, Yin H and Shi Y 2020 Chin. Phys. B 29 058202
[33] Zhang X, Han J H, Li Y, Sun C F, Su X, Shi Y and Yin H 2020 Chin. Phys. B 29 038201
[34] Seo J, Kim S and Park S Y 2004 J Am. Chem. Soc. 126 11154
[35] Marenich A V, Cramer C J and Truhlar D G 2009 J Phys. Chem. B 113 6378
[36] Cohen A J, Mori-Sánchez P and Yang W 2008 Science 321 792
[37] Jacquemin D, Mennucci B and Adamo C 2011 Phys. Chem. Chem. Phys. 13 16987
[38] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
[39] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[40] Ruckenbauer M, Fazzi D, Arbelo-Gonzalez W and Barbatti M A 2016 Tutorial for NEWTON-X version 2.0
[41] Lu T http://sobereva.com/286 (Date of access: 27/03/2022).
[42] Harvey J, Aschi M, Schwarz H and Koch W 1998 Theor. Chem. Acc. 99 95
[43] Miller W H, Handy N C and Adams J E 1980 J. Chem. Phys. 72 99
[44] Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 16 Revision A. 03 (Wallingford CT, Gaussian Inc.)
[45] Bruemmer K J, Walvoord R R, Brewer T F, Burgos-Barragan G, Wit N, Pontel L B, Patel K J and Chang C J 2017 J. Am. Chem. Soc. 139 5338
[46] Schlegel H B 1982 J. Comput. Chem. 3 214
[47] Yang Y F, Chen Y P, Zhao Y, Shi W, Ma F C and Li Y Q 2019 J. Lumin. 206 326
[48] Zhao Y X, Wu X N, Ma J B, He S G and Ding X L 2010 J. Phys. Chem. C 114 12271
[49] Zhao Y, Ding Y, Yang Y, Shi W and Li Y 2019 Org. Chem. Front. 6 597
[50] Basarić N and Wan P 2006 Photoch. Photobio. Sci. 5 656
[51] Zhao N, Li Y, Jia Y and Li P 2018 J. Phys. Chem. C 122 26576
[52] Li C Z, Yang Y G, Ma C and Liu Y F 2016 RSC Adv. 6 5134
[53] Zhao G J and Han K L 2007 J. Phys. Chem. A 111 9218
[54] Li C Z, Yang Y G, Li D L and Liu Y F 2017 Phys. Chem. Chem. Phys. 19 4802
[55] Zhao G J and Han K L 2007 J. Phys. Chem. A 111 2469
[56] Li H, Han J, Zhao H, Liu X, Luo Y, Shi Y, Liu C, Jin M and Ding D 2019 J. Phys. Chem. Lett. 10 748
[57] Andrienko G A Chemcraft 1.8 https://chemcraftprog.com/ (Date of access: 27/03/2022)
[58] Gutman I and Cyvin S J 1989 Introduction to the Theory of Benzenoid Hydrocarbons (Springer Inc.) pp. 51-77
[59] Nagaoka S, Hirota N, Sumitani M, Yoshihara K, Lipczynska-Kochany E and Iwamura H 1984 J Am. Chem. Soc. 106 6913
[60] Nagaoka S, Hirota N, Sumitani M and Yoshihara K 1983 J. Am. Chem. Soc. 105 4220
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[4] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[5] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[6] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[7] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[8] Quantum nature of proton transferring across one-dimensional potential fields
Cheng Bi(毕成), Quan Chen (陈泉), Wei Li(李伟), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(4): 046601.
[9] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[10] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[11] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[12] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[13] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[14] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[15] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
No Suggested Reading articles found!