CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Theoretical investigation on the fluorescent sensing mechanism for recognizing formaldehyde: TDDFT calculation and excited-state nonadiabatic dynamics |
Yunfan Yang(杨云帆)1,3,†, Lujia Yang(杨璐佳)1, Fengcai Ma(马凤才)2, Yongqing Li(李永庆)2,‡, and Yue Qiu(邱岳)4 |
1 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; 2 Department of Physics, Liaoning University, Shenyang 110036, China; 3 State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; 4 Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts University of Melbourne, Parkville, VIC 3052, Australia |
|
|
Abstract Inspired by the activity-based sensing method, the hydrazine-modified naphthalene derivative (Naph1) was synthesized and used as a fluorescent probe to detect formaldehyde (FA) in living cells. Through the condensation reaction between the probe Naph1 and analyte FA, researchers observed a ~ 14 folds enhancement of fluorescent signal around 510 nm in an experiment, realizing the high selectivity and sensitivity detection of FA. However, a theoretical understanding of the sensing mechanism was not provided in the experimental work. Given this, the light-up fluorescent detecting mechanism was in-depth unveiled by performing the time-dependent density functional theory (TDDFT) and the complete active space self-consistent field (CASSCF) theoretical calculations on excited-state intramolecular proton transfer (ESIPT) and non-adiabatic excited-state dynamics simulation. The deactivation channel of S1/T2 intersystem crossing (ISC) was turned off to successfully recognize FA. Insight into the ESIPT-based fluorescent detecting mechanism indicated that ESIPT was essential to light-up fluorescent probes. This work would provide a new viewpoint to develop ESIPT-based fluorescent probes for detecting reactive carbon species in vivo or vitio.
|
Received: 02 June 2022
Revised: 29 June 2022
Accepted manuscript online: 13 July 2022
|
PACS:
|
78.47.da
|
(Excited states)
|
|
33.15.Hp
|
(Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
33.20.-t
|
(Molecular spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104392); the Natural Science Foundation of Hebei Province, China (Grant No. B2021203017); the High-Level Innovative Talents Program of Shenyang City (Grant No. RC200565); and the Innovation Capability Improvement Project of Hebei Province, China (Grant No. 22567605H). The numerical calculations in this paper have been done on the supercomputing system in the High-Performance Computing Center of Yanshan University. |
Corresponding Authors:
Yunfan Yang, Yongqing Li
E-mail: yangyunfan2626@163.com;yqli@lnu.edu.cn
|
Cite this article:
Yunfan Yang(杨云帆), Lujia Yang(杨璐佳), Fengcai Ma(马凤才), Yongqing Li(李永庆), and Yue Qiu(邱岳) Theoretical investigation on the fluorescent sensing mechanism for recognizing formaldehyde: TDDFT calculation and excited-state nonadiabatic dynamics 2023 Chin. Phys. B 32 057801
|
[1] Ariyageadsakul P, Vchirawongkwin V and Kritayakornupong C 2016 Sensor Actuat. B-Chem. 232 165 [2] Jass H E 1985 History and Status of Formaldehyde in the Cosmetics Industry (Advances in Chemistry of ACS Publications) pp. 229-236 [3] Meyer B and Hermanns K 1985 Formaldehyde Release from Pressed Wood Products (Advances in Chemistry of ACS Publications) pp. 101-116 [4] Scheuplein R J 1985 Formaldehyde: The Food and Drug Administration's Perspective (Advances in Chemistry of ACS Publications) pp. 237-245 [5] Organization W H, Formaldehyde, World Health Organization, 1989 [6] Tang X, Bai Y, Duong A, Smith M T, Li L and Zhang L 2009 Environ. Int. 35 1210 [7] Tsukada Y I, Fang J, Erdjument-Bromage H, Warren M E, Borchers C H, Tempst P and Zhang Y 2006 Nature 439 811 [8] Lu K, Craft S, Nakamura J, Moeller B C and Swenberg J A 2012 Chem. Res. Toxicol. 25 664 [9] Merk O and Speit G 1998 Environ. Mol. Mutagen. 32 260 [10] Zhao X Q and Zhang Z Q 2009 Talanta 80 242 [11] Li F X, Lu J, Xu Y J, Tong Z Q, Me C L and He R Q 2008 Prog. Biochem. Biophys. 35 393 [12] Kowatsch S Formaldehyde in: Phenolic Resins: A Century of Progress, Springer Inc, 2010, pp. 25-40 [13] Ohata J, Bruemmer K J and Chang C J 2019 Accounts Chem. Res. 52 2841 [14] Liu X, Li N, Li M, Chen H, Zhang N, Wang Y and Zheng K 2020 Coordin. Chem. Rev. 404 213109 [15] Chen W, Yang M, Luo N, Wang F, Yu R Q and Jiang J H 2019 Analyst 144 6922 [16] He L, Yang X, Ren M, Kong X, Liu Y and Lin W 2016 Chem. Comm. 52 9582 [17] Chang C J, James T D, New E J and Tang B Z 2020 Accounts Chem. Res. 53 1 [18] Zhang H, Shao Z and Zhao K 2020 Chin. Phys. B 29 083304 [19] Zhao J, Ji S, Chen Y, Guo H and Yang P 2012 Phys. Chem. Chem. Phys. 14 8803 [20] Li G Y and Han K L 2018 WIRES Comput. Mol. Sci. 8 e1351 [21] Zheng J J, Lu Y Q, Li P L and Chen T 2010 Acta Phys. Sin. 59 6626 (in Chinese) [22] Song Y, Liu S, Lu J, Zhang H, Zhang C and Du J 2019 Chin. Phys. B 28 093102 [23] Li Y Q, Ma Y Z, Yang Y F, Shi W, Lan R F and Guo Q 2018 Phys. Chem. Chem. Phys. 20 4208 [24] Yang Y, Ding Y, Shi W, Ma F and Li Y 2020 J. Lumin. 218 116836 [25] Zhao J and Jin B 2021 J. Lumin. 232 117800 [26] Zhao J, Li Z and Jin B 2021 J. Lumin. 238 118231 [27] Niu Y, Wang R, Shao P, Wang Y and Zhang Y 2018 Chem. Eur. J. 24 16670 [28] Nagaoka S I, Endo H, Ohara K and Nagashima U 2015 J. Phys. Chem. B 119 2525 [29] Tseng H W, Liu J Q, Chen Y A, Chao C M, Liu K M, Chen C L, Lin T C, Hung C H, Chou Y L, Wang T L and Chou P T 2015 J. Phys. Chem. Lett. 6 1477 [30] Nagaoka S I, Nakamura A and Nagashima U 2002 J. Photoch. Photobio. A 154 23 [31] Yang Y G, Liu Y F, Yang D P, Li H, Jiang K and Sun J F 2015 Spectrochim. Acta A 151 814 [32] Sun C, Cao B, Yin H and Shi Y 2020 Chin. Phys. B 29 058202 [33] Zhang X, Han J H, Li Y, Sun C F, Su X, Shi Y and Yin H 2020 Chin. Phys. B 29 038201 [34] Seo J, Kim S and Park S Y 2004 J Am. Chem. Soc. 126 11154 [35] Marenich A V, Cramer C J and Truhlar D G 2009 J Phys. Chem. B 113 6378 [36] Cohen A J, Mori-Sánchez P and Yang W 2008 Science 321 792 [37] Jacquemin D, Mennucci B and Adamo C 2011 Phys. Chem. Chem. Phys. 13 16987 [38] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [39] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [40] Ruckenbauer M, Fazzi D, Arbelo-Gonzalez W and Barbatti M A 2016 Tutorial for NEWTON-X version 2.0 [41] Lu T http://sobereva.com/286 (Date of access: 27/03/2022). [42] Harvey J, Aschi M, Schwarz H and Koch W 1998 Theor. Chem. Acc. 99 95 [43] Miller W H, Handy N C and Adams J E 1980 J. Chem. Phys. 72 99 [44] Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 16 Revision A. 03 (Wallingford CT, Gaussian Inc.) [45] Bruemmer K J, Walvoord R R, Brewer T F, Burgos-Barragan G, Wit N, Pontel L B, Patel K J and Chang C J 2017 J. Am. Chem. Soc. 139 5338 [46] Schlegel H B 1982 J. Comput. Chem. 3 214 [47] Yang Y F, Chen Y P, Zhao Y, Shi W, Ma F C and Li Y Q 2019 J. Lumin. 206 326 [48] Zhao Y X, Wu X N, Ma J B, He S G and Ding X L 2010 J. Phys. Chem. C 114 12271 [49] Zhao Y, Ding Y, Yang Y, Shi W and Li Y 2019 Org. Chem. Front. 6 597 [50] Basarić N and Wan P 2006 Photoch. Photobio. Sci. 5 656 [51] Zhao N, Li Y, Jia Y and Li P 2018 J. Phys. Chem. C 122 26576 [52] Li C Z, Yang Y G, Ma C and Liu Y F 2016 RSC Adv. 6 5134 [53] Zhao G J and Han K L 2007 J. Phys. Chem. A 111 9218 [54] Li C Z, Yang Y G, Li D L and Liu Y F 2017 Phys. Chem. Chem. Phys. 19 4802 [55] Zhao G J and Han K L 2007 J. Phys. Chem. A 111 2469 [56] Li H, Han J, Zhao H, Liu X, Luo Y, Shi Y, Liu C, Jin M and Ding D 2019 J. Phys. Chem. Lett. 10 748 [57] Andrienko G A Chemcraft 1.8 https://chemcraftprog.com/ (Date of access: 27/03/2022) [58] Gutman I and Cyvin S J 1989 Introduction to the Theory of Benzenoid Hydrocarbons (Springer Inc.) pp. 51-77 [59] Nagaoka S, Hirota N, Sumitani M, Yoshihara K, Lipczynska-Kochany E and Iwamura H 1984 J Am. Chem. Soc. 106 6913 [60] Nagaoka S, Hirota N, Sumitani M and Yoshihara K 1983 J. Am. Chem. Soc. 105 4220 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|