Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010101    DOI: 10.1088/1674-1056/ae1c21
COMPUTATIONAL PROGRAMS FOR PHYSICS   Next  

Practical algorithm for simulating thermal pure quantum states

Wei-Bo He(何伟博)1,2, Yun-Tong Yang(杨贇彤)1,2, and Hong-Gang Luo(罗洪刚)1,2,†
1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MoE, Gansu Provincial Research Center for Basic Disciplines of Quantum Physics, Lanzhou University, Lanzhou 730000, China
Abstract  The development of novel quantum many-body computational algorithms relies on robust benchmarking. However, generating such benchmarks is often hindered by the massive computational resources required for exact diagonalization or quantum Monte Carlo simulations, particularly at finite temperatures. In this work, we propose a new algorithm for obtaining thermal pure quantum states, which allows efficient computation of both mechanical and thermodynamic properties at finite temperatures. We implement this algorithm in our open-source C++ template library, Physica. Combining the improved algorithm with state-of-the-art software engineering, our implementation achieves high performance and numerical stability. As an example, we demonstrate that for the $4 \times 4$ Hubbard model, our method runs approximately $10^3$ times faster than $\mathcal{H}\varPhi$ 3.5.2. Moreover, the accessible temperature range is extended down to $\beta = 32$ across arbitrary doping levels. These advances significantly push forward the frontiers of benchmarking for quantum many-body systems.
Keywords:  Physica      thermal pure quantum states      Hubbard model      strong correlated electron systems  
Received:  03 September 2025      Revised:  21 October 2025      Accepted manuscript online:  06 November 2025
PACS:  01.50.hv (Computer software and software reviews)  
  02.70.-c (Computational techniques; simulations)  
  05.30.-d (Quantum statistical mechanics)  
  71.10.-w (Theories and models of many-electron systems)  
Fund: The authors acknowledge Fu-Zhou Chen for helpful discussions. The work is partly supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402704) and the National Natural Science Foundation of China (Grant No. 12247101).
Corresponding Authors:  Hong-Gang Luo     E-mail:  luohg@lzu.edu.cn

Cite this article: 

Wei-Bo He(何伟博), Yun-Tong Yang(杨贇彤), and Hong-Gang Luo(罗洪刚) Practical algorithm for simulating thermal pure quantum states 2026 Chin. Phys. B 35 010101

[1] Hirsch J E 1985 Phys. Rev. B 31 4403
[2] Sandvik A W and Kurkijarvi J 1991 Phys. Rev. B 43 5950
[3] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349
[4] Schollwock U 2005 Rev. Mod. Phys. 77 259
[5] Verstraete F, Nishino T, Schollwock U, Ba nuls M C, Chan G K and Stoudenmire M E 2023 Nature Reviews Physics 5 273
[6] Banuls M C 2023 Annual Review of Condensed Matter Physics 14 173
[7] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[8] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[9] Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T and Werner P 2014 Rev. Mod. Phys. 86 779
[10] Jaklic J and Prelov sek P 1994 Phys. Rev. B 49 5065
[11] Jaklic J and Prelov sek P 2000 Advances in Physics 49 1
[12] Weinberg P and Bukov M 2017 SciPost Phys. 2 003
[13] Wietek A, Staszewski L, Ulaga M, Ebert P L, Karlsson H, Sarkar S, Shackleton H, Sinha A and Soares R D 2025 arxiv 2505.02901
[14] Ido K, Kawamura M, Motoyama Y, Yoshimi K, Yamaji Y, Todo S, Kawashima N and Misawa T 2024 Computer Physics Communications 298 109093
[15] Assaad F F, Bercx M, Goth F, Gotz A, Hofmann J S, Huffman E, Liu Z, Toldin F P, Portela J S E and Schwab J 2022 SciPost Phys. Codebases 1
[16] Assaad F F, Bercx M, Goth F, G tz A, Hofmann J S, Huffman E, Liu Z, Toldin F P, Portela J S E and Schwab J 2022 SciPost Phys. Codebases 1-r2.0
[17] Huang E W, Mendl C B, Liu S X, Johnston S, Jiang H C, Moritz B and Devereaux T P 2017 Science 358 1161
[18] Sugiura S and Shimizu A 2012 Phys. Rev. Lett. 108 240401
[19] Sugiura S and Shimizu A 2013 Phys. Rev. Lett. 111 010401
[20] Hyuga M, Sugiura S, Sakai K and Shimizu A 2014 Phys. Rev. B 90 121110
[21] Jung J H and Noh J D 2020 Journal of the Korean Physical Society 76 670
[22] Liang S 1995 Computer Physics Communications 92 11
[23] Jia C J and Wang Y and Mendl C B and Moritz B and Devereaux T P 2018 Computer Physics Communications 224 81
[24] Lanczos C 1950 J. Res. Natl. Bur. Stand. B 45 255
[25] Al-Mohy A H and Higham N J 2011 SIAM Journal on Scientific Computing 33 488
[26] Higham N J 1990 SIAM Journal on Scientific and Statistical Computing 11 804
[27] Hubbard J and Flowers B H 1967 Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 296 82
[28] Yang S, Park S J and Ousterhout J 2018 2018 USENIX Annual Technical Conference (USENIX ATC 18) 335
[29] Sandia Corporation 2003-2025 https://docs.lammps.org/
[30] CP2K Developers 2000-2025 https://manual.cp2k.org/
[31] He W B 2025 https://gitee.com/newsigma/Physica
[32] He W B 2025 https://gitee.com/newsigma/Physica/tree/Physica/doc
[33] Golub G H and Van Loan C F 2013 Johns Hopkins University Press
[34] Guennebaud G, Jacob B, et al. 2010 http://eigen.tuxfamily.org
[35] Sanderson C and Curtin R 2025 2025 17th International Conference on Computer and Automation Engineering (ICCAE) 303
[36] Fog A 2023 https://github.com/vectorclass/version2
[37] Intel Corporation 2025 https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/ onemkl.html
[38] NVIDIA Corporation 2025 https://developer.nvidia.com/cuda-toolkit
[39] Harris C R, Millman K J, van der Walt S and et al. 2020 Nature 585 357
[40] The MathWorks, Inc. 1994-2025 https://www.mathworks.com/help/index.html
[41] The HDF Group 2006 https://www.hdfgroup.org/HDF5/
[42] The Qt Company 2025 https://doc.qt.io/qt-6/
[1] Strain tuning of the transport gap and magnetic order in Dirac fermion systems
Jingyao Meng(孟敬尧), Zenghui Fan(范增辉), Miao Ye(叶苗), and Tianxing Ma(马天星). Chin. Phys. B, 2025, 34(9): 098101.
[2] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[3] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[4] Dynamical structure factor and a new method to measure the pairing gap in two-dimensional attractive Fermi-Hubbard model
Huaisong Zhao(赵怀松), Feng Yuan(袁峰), Tianxing Ma(马天星), and Peng Zou(邹鹏). Chin. Phys. B, 2025, 34(11): 117102.
[5] Pairing correlation of the kagome-lattice Hubbard model with the nearest-neighbor interaction
Chen Yang(杨晨), Chao Chen(陈超), Runyu Ma(马润宇), Ying Liang(梁颖), and Tianxing Ma(马天星). Chin. Phys. B, 2024, 33(10): 107404.
[6] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[7] Relevance of 3d multiplet structure in nickelate and cuprate superconductors
Mi Jiang(蒋密). Chin. Phys. B, 2021, 30(10): 107103.
[8] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[9] Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions
Hai-Di Liu(刘海迪). Chin. Phys. B, 2019, 28(10): 107102.
[10] Slater determinant and exact eigenstates of the two-dimensional Fermi-Hubbard model
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2018, 27(7): 073102.
[11] Off-site trimer superfluid on a one-dimensional optical lattice
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟). Chin. Phys. B, 2017, 26(4): 043701.
[12] Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting
Yilin Wang(王义林), Li Huang(黄理), Liang Du(杜亮), Xi Dai(戴希). Chin. Phys. B, 2016, 25(3): 037103.
[13] Phase diagram of the Fermi–Hubbard model with spin-dependent external potentials: A DMRG study
Wei Xing-Bo (魏兴波), Meng Ye-Ming (孟烨铭), Wu Zhe-Ming (吴哲明), Gao Xian-Long (高先龙). Chin. Phys. B, 2015, 24(11): 117101.
[14] Disappearance of the Dirac cone in silicene due to the presence of an electric field
D. A. Rowlands, Zhang Yu-Zhong (张宇钟). Chin. Phys. B, 2014, 23(3): 037101.
[15] Extended Bose–Hubbard model with pair hopping on triangular lattice
Wang Yan-Cheng (王艳成), Zhang Wan-Zhou (张万舟), Shao Hui (邵慧), Guo Wen-An (郭文安). Chin. Phys. B, 2013, 22(9): 096702.
No Suggested Reading articles found!