Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 057101    DOI: 10.1088/1674-1056/28/5/057101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mott transition in ruby lattice Hubbard model

An Bao(保安)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Mott transition in a ruby lattice with fermions described by the Hubbard model including on-site repulsive interaction is investigated by combining the cellular dynamical mean-field theory and the continuous-time quantum Monte Carlo algorithm. The effect of temperature and on-site repulsive interaction on the metallic-insulating phase transition in ruby lattice with fermions is discussed based on the density of states and double occupancy. In addition, the magnetic property of each phase is discussed by defining certain magnetic order parameters. Our results show that the antiferromagnetic metal is found at the low temperature and weak interaction region and the antiferromagnetic insulating phase is found at the low temperature and strong interaction region. The paramagnetic metal appears in whole on-site repulsive interaction region when the temperature is higher than a certain value and the paramagnetic insulator appears at the middle scale of temperature and on-site repulsive interaction.

Keywords:  Mott transition      ruby lattice      Hubbard model      cellular dynamical mean-field theory  
Received:  26 September 2018      Revised:  27 February 2019      Accepted manuscript online: 
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: 

Project supported by Inner Mongolia Natural Science Foundation, China (Grant No. 06021601).

Corresponding Authors:  An Bao     E-mail:  baoan204@aliyun.com

Cite this article: 

An Bao(保安) Mott transition in ruby lattice Hubbard model 2019 Chin. Phys. B 28 057101

[1] Martelo L Z, Dzierzawa M, Siffert L and Baeriswyl D 1997 Z. Phys. B 103 335
[2] Yoshioka T, Koga A and Kawakami N 2009 Phys. Rev. Lett. 103 036401
[3] Bao A, Tao H S, Liu H D, Zhang X Z and Liu W M 2014 Sci. Rep. 4 6918
[4] Singh Y and Gegenwart P 2010 Phys. Rev. B 82 064412
[5] Liu H D, Chen Y H, Lin H F, Tao H S and Liu W M 2014 Sci. Rep. 4 4829
[6] Sorella S and Tosatti E 1992 Europhys. Lett. 19 699
[7] Wu W, Chen Y H, Tao H S, Tong N H and Liu W M 2010 Phys. Rev. B 82 245102
[8] Chen Y H, Tao H S, Yao D X and Liu W M 2012 Phys. Rev. Lett. 108 246402
[9] Ohashi T, Kawakami N and Tsunetsugu H 2006 Phys. Rev. Lett. 97 066401
[10] Bao A, Zhang X F and Zhang X Z 2015 Chin. Phys. B 24 050310
[11] Raghu S, Qi X L, Honerkamp C and Zhang S C 2008 Phys. Rev. Lett. 100 156401
[12] Rüegg A, Wen J and Fiete G A 2010 Phys. Rev. B 81 205115
[13] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[14] Shimizu Y, Miyagawa K, Kanoda K, Maesato M and Saito G 2003 Phys. Rev. Lett. 91 107001
[15] Liu G C, Zhang P, Wang Z G and Li S S 2009 Phys. Rev. B 79 035323
[16] Zhang M C, Hung H H, Zhang C W and Wu C J 2011 Phys. Rev. A 83 023615
[17] Itou T, Oyamada A, Maegawa S, Tamura M and Kato R 2008 Phys. Rev. B 77 104413
[18] Rasche B, Isaeva A, Ruck M, Borisenko S, Zabolotnyy V, Büchner B, Koepernik K, Ortix C, Richter M and Brink J van den 2013 Nat. Mat. 12 422
[19] Hu X, Kargarian M and Fiete G A 2011 Phys. Rev. B 84 155116
[20] Hou J M and Wang G X 2013 Commun. Theor. Phys. 60 129
[21] Whitsitt S, Chua V and Fiete G A 2012 New J. Phys. 14 115029
[22] Lin K Y and Ma W J 1983 J. Phys. A: Math. Gen. 16 3895
[23] Kargarian M, Bombin H and Martin-Delgado M A 2010 New J. Phys. 12 025018
[24] Hubbard J 1963 Proc. R. Soc. Lond. A 276 238
[25] Gutzwiller M C 1963 Phys. Rev. Lett. 10 159
[26] Aryanpour K, Pickett W E and Scalettar R T 2006 Phys. Rev. B 74 085117
[27] Ohashi T, Momoi T, Tsunetsugu H and Kawakami N 2008 Phys. Rev. Lett. 100 076402
[28] Kotliar G, Savrasov S Y, Pálsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
[29] Biroli G and Kotliar G 2002 Phys. Rev. B 65 155112
[30] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[31] Park H, Haule K and Kotliar G 2008 Phys. Rev. Lett. 101 186403
[32] Parcollet O and Biroli G 2004 Phys. Rev. Lett. 92 226402
[33] Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
[34] Tao H S, Chen Y H, Lin H F, Liu H D and Liu W M 2014 Sci. Rep. 4 5367
[35] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324
[36] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[37] Müller-Hartmann E 1989 Z. Phys. B 74 507
[38] Jarrell M and Gubernatis 1996 Phys. Rep. 269 133
[39] Chen Y H, Hung H H, Su G X, Fiete G A and Ting C S 2015 Phys. Rev. B 91 045122
[40] Rozenberg M J, Chitra R and Kotliar G 1999 Phys. Rev. Lett. 83 3498
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Dynamic vortex Mott transition in triangular superconducting arrays
Zi-Xi Pei(裴子玺), Wei-Gui Guo(郭伟贵), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037404.
[3] Relevance of 3d multiplet structure in nickelate and cuprate superconductors
Mi Jiang(蒋密). Chin. Phys. B, 2021, 30(10): 107103.
[4] Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions
Hai-Di Liu(刘海迪). Chin. Phys. B, 2019, 28(10): 107102.
[5] Slater determinant and exact eigenstates of the two-dimensional Fermi-Hubbard model
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2018, 27(7): 073102.
[6] Off-site trimer superfluid on a one-dimensional optical lattice
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟). Chin. Phys. B, 2017, 26(4): 043701.
[7] Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting
Yilin Wang(王义林), Li Huang(黄理), Liang Du(杜亮), Xi Dai(戴希). Chin. Phys. B, 2016, 25(3): 037103.
[8] Phase diagram of the Fermi–Hubbard model with spin-dependent external potentials: A DMRG study
Wei Xing-Bo (魏兴波), Meng Ye-Ming (孟烨铭), Wu Zhe-Ming (吴哲明), Gao Xian-Long (高先龙). Chin. Phys. B, 2015, 24(11): 117101.
[9] Disappearance of the Dirac cone in silicene due to the presence of an electric field
D. A. Rowlands, Zhang Yu-Zhong (张宇钟). Chin. Phys. B, 2014, 23(3): 037101.
[10] Extended Bose–Hubbard model with pair hopping on triangular lattice
Wang Yan-Cheng (王艳成), Zhang Wan-Zhou (张万舟), Shao Hui (邵慧), Guo Wen-An (郭文安). Chin. Phys. B, 2013, 22(9): 096702.
[11] Effects of effective attractive multi-body interaction on quantum phase and transport dynamics of a strongly correlated bosonic gas across the superfluid to Mott insulator transition
Sun Jian-Fang (孙剑芳), Cui Guo-Dong (崔国栋), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(11): 110307.
[12] Alternative routes to equivalent classical models of a quantum system
M. Radonjić, Slobodan Prvanović, Nikola Burić. Chin. Phys. B, 2012, 21(12): 120301.
[13] Effective Bose–Hubbard interaction with enhanced nonlinearity in an array of coupled cavities
Zhou Ling(周玲), Liu Zhong-Ju(刘忠菊), Yan Wei-Bin(闫伟斌), and Mu Qing-Xia(穆青霞). Chin. Phys. B, 2011, 20(7): 074205.
[14] Quantum phase transition and von Neumann entropy of quasiperiodic Hubbard chains
Zhu Xuan(朱璇) and Tong Pei-Qing(童培庆). Chin. Phys. B, 2008, 17(5): 1623-1628.
[15] The pairing correlations in the phased t-U Hubbard model
Liu Zi-Xin (刘自信), Liu Ping (刘平), Liu Ya (刘亚), Wen Sheng-Hui (文生辉). Chin. Phys. B, 2004, 13(2): 229-233.
No Suggested Reading articles found!