CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Mott transition in ruby lattice Hubbard model |
An Bao(保安) |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Mott transition in a ruby lattice with fermions described by the Hubbard model including on-site repulsive interaction is investigated by combining the cellular dynamical mean-field theory and the continuous-time quantum Monte Carlo algorithm. The effect of temperature and on-site repulsive interaction on the metallic-insulating phase transition in ruby lattice with fermions is discussed based on the density of states and double occupancy. In addition, the magnetic property of each phase is discussed by defining certain magnetic order parameters. Our results show that the antiferromagnetic metal is found at the low temperature and weak interaction region and the antiferromagnetic insulating phase is found at the low temperature and strong interaction region. The paramagnetic metal appears in whole on-site repulsive interaction region when the temperature is higher than a certain value and the paramagnetic insulator appears at the middle scale of temperature and on-site repulsive interaction.
|
Received: 26 September 2018
Revised: 27 February 2019
Accepted manuscript online:
|
PACS:
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
Fund: Project supported by Inner Mongolia Natural Science Foundation, China (Grant No. 06021601). |
Corresponding Authors:
An Bao
E-mail: baoan204@aliyun.com
|
Cite this article:
An Bao(保安) Mott transition in ruby lattice Hubbard model 2019 Chin. Phys. B 28 057101
|
[1] |
Martelo L Z, Dzierzawa M, Siffert L and Baeriswyl D 1997 Z. Phys. B 103 335
|
[2] |
Yoshioka T, Koga A and Kawakami N 2009 Phys. Rev. Lett. 103 036401
|
[3] |
Bao A, Tao H S, Liu H D, Zhang X Z and Liu W M 2014 Sci. Rep. 4 6918
|
[4] |
Singh Y and Gegenwart P 2010 Phys. Rev. B 82 064412
|
[5] |
Liu H D, Chen Y H, Lin H F, Tao H S and Liu W M 2014 Sci. Rep. 4 4829
|
[6] |
Sorella S and Tosatti E 1992 Europhys. Lett. 19 699
|
[7] |
Wu W, Chen Y H, Tao H S, Tong N H and Liu W M 2010 Phys. Rev. B 82 245102
|
[8] |
Chen Y H, Tao H S, Yao D X and Liu W M 2012 Phys. Rev. Lett. 108 246402
|
[9] |
Ohashi T, Kawakami N and Tsunetsugu H 2006 Phys. Rev. Lett. 97 066401
|
[10] |
Bao A, Zhang X F and Zhang X Z 2015 Chin. Phys. B 24 050310
|
[11] |
Raghu S, Qi X L, Honerkamp C and Zhang S C 2008 Phys. Rev. Lett. 100 156401
|
[12] |
Rüegg A, Wen J and Fiete G A 2010 Phys. Rev. B 81 205115
|
[13] |
Guo H M and Franz M 2009 Phys. Rev. B 80 113102
|
[14] |
Shimizu Y, Miyagawa K, Kanoda K, Maesato M and Saito G 2003 Phys. Rev. Lett. 91 107001
|
[15] |
Liu G C, Zhang P, Wang Z G and Li S S 2009 Phys. Rev. B 79 035323
|
[16] |
Zhang M C, Hung H H, Zhang C W and Wu C J 2011 Phys. Rev. A 83 023615
|
[17] |
Itou T, Oyamada A, Maegawa S, Tamura M and Kato R 2008 Phys. Rev. B 77 104413
|
[18] |
Rasche B, Isaeva A, Ruck M, Borisenko S, Zabolotnyy V, Büchner B, Koepernik K, Ortix C, Richter M and Brink J van den 2013 Nat. Mat. 12 422
|
[19] |
Hu X, Kargarian M and Fiete G A 2011 Phys. Rev. B 84 155116
|
[20] |
Hou J M and Wang G X 2013 Commun. Theor. Phys. 60 129
|
[21] |
Whitsitt S, Chua V and Fiete G A 2012 New J. Phys. 14 115029
|
[22] |
Lin K Y and Ma W J 1983 J. Phys. A: Math. Gen. 16 3895
|
[23] |
Kargarian M, Bombin H and Martin-Delgado M A 2010 New J. Phys. 12 025018
|
[24] |
Hubbard J 1963 Proc. R. Soc. Lond. A 276 238
|
[25] |
Gutzwiller M C 1963 Phys. Rev. Lett. 10 159
|
[26] |
Aryanpour K, Pickett W E and Scalettar R T 2006 Phys. Rev. B 74 085117
|
[27] |
Ohashi T, Momoi T, Tsunetsugu H and Kawakami N 2008 Phys. Rev. Lett. 100 076402
|
[28] |
Kotliar G, Savrasov S Y, Pálsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
|
[29] |
Biroli G and Kotliar G 2002 Phys. Rev. B 65 155112
|
[30] |
Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
|
[31] |
Park H, Haule K and Kotliar G 2008 Phys. Rev. Lett. 101 186403
|
[32] |
Parcollet O and Biroli G 2004 Phys. Rev. Lett. 92 226402
|
[33] |
Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
|
[34] |
Tao H S, Chen Y H, Lin H F, Liu H D and Liu W M 2014 Sci. Rep. 4 5367
|
[35] |
Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324
|
[36] |
Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
|
[37] |
Müller-Hartmann E 1989 Z. Phys. B 74 507
|
[38] |
Jarrell M and Gubernatis 1996 Phys. Rep. 269 133
|
[39] |
Chen Y H, Hung H H, Su G X, Fiete G A and Ting C S 2015 Phys. Rev. B 91 045122
|
[40] |
Rozenberg M J, Chitra R and Kotliar G 1999 Phys. Rev. Lett. 83 3498
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|