Mott transition in a ruby lattice with fermions described by the Hubbard model including on-site repulsive interaction is investigated by combining the cellular dynamical mean-field theory and the continuous-time quantum Monte Carlo algorithm. The effect of temperature and on-site repulsive interaction on the metallic-insulating phase transition in ruby lattice with fermions is discussed based on the density of states and double occupancy. In addition, the magnetic property of each phase is discussed by defining certain magnetic order parameters. Our results show that the antiferromagnetic metal is found at the low temperature and weak interaction region and the antiferromagnetic insulating phase is found at the low temperature and strong interaction region. The paramagnetic metal appears in whole on-site repulsive interaction region when the temperature is higher than a certain value and the paramagnetic insulator appears at the middle scale of temperature and on-site repulsive interaction.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.