| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice |
| Hao Zhang(张浩)1, Shaojun Dong(董少钧)2, and Lixin He(何力新)1,2,3,† |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; 3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China |
|
|
|
|
Abstract We investigate the hole-doped Hubbard model on a honeycomb lattice using a fermionic projected entangled pair states (fPEPS) method. Our study reveals the presence of quasi-long-range order of Cooper pairs, characterized by power-law decay of correlation functions with exponents $K>1$. We further analyze the competing phases of superconductivity, specifically the antiferromagnetic (AFM) order and the charge density wave (CDW) order. Our results show that there are domain wall structures when the hole doping $\delta$ is small and the Coulomb parameter $U$ is large. However, these structures disappear as we increase the hole doping $\delta$ or decrease $U$. Furthermore, for small hole doping, the system exhibits AFM order, which diminishes for $\delta > 0.05$. Conversely, as the doping level increases, the CDW order gradually decreases. Notably, a considerable CDW order persists even at higher doping levels. These findings suggest a progressive suppression of the AFM order and a growing prominence of the CDW order with increasing $\delta$.
|
Received: 24 February 2025
Revised: 09 April 2025
Accepted manuscript online: 10 April 2025
|
|
PACS:
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
| |
74.25.Dw
|
(Superconductivity phase diagrams)
|
| |
73.22.Pr
|
(Electronic structure of graphene)
|
| |
02.70.-c
|
(Computational techniques; simulations)
|
|
| Fund: We thank Hongchen Jiang for helpful discussion. Project supported by the National Natural Science Foundation of China (Grant Nos. 12134012 and 12104433). |
Corresponding Authors:
Lixin He
E-mail: helx@ustc.edu.cn
|
Cite this article:
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新) Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice 2025 Chin. Phys. B 34 077102
|
[1] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189 [2] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908 [3] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [4] Hubbard J 1963 Proc. R. Soc. Lond. A 276 238 [5] Rozhkov A V and Rakhmanov A L 2011 J. Phys.: Condens. Matter. 23 065601 [6] Kitatani M, Schäfer T, Aoki H and Held K 2019 Phys. Rev. B 99 041115 [7] Qin M, Chung C M, Shi H, Vitali E, Hubig C, Schollwöck U, White S R and Zhang S 2020 Phys. Rev. X 10 031016 [8] Pathak S, Shenoy V B and Baskaran G 2010 Phys. Rev. B 81 085431 [9] Black-Schaffer A M,WuWand Le Hur K 2014 Phys. Rev. B 90 054521 [10] Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F and Lee D H 2012 Phys. Rev. B 85 035414 [11] Xu X Y, Wessel S and Meng Z Y 2016 Phys. Rev. B 94 115105 [12] Jiang S, Mesaros A and Ran Y 2014 Phys. Rev. X 4 031040 [13] Gu Z C, Jiang H C and Baskaran G 2020 Phys. Rev. B 101 205147 [14] Kiesel M L, Platt C, HankeW, Abanin D A and Thomale R 2012 Phys. Rev. B 86 020507 [15] Raghu S, Kivelson S A and Scalapino D J 2010 Phys. Rev. B 81 224505 [16] Honerkamp C 2008 Phys. Rev. Lett. 100 146404 [17] Ying T and Yang S 2020 Phys. Rev. B 102 125125 [18] Wolf S, Schmidt T L and Rachel S 2018 Phys. Rev. B 98 174515 [19] Nandkishore R, Levitov L S and Chubukov A V 2012 Nat. Phys. 8 158 [20] Watanabe T and Ishihara S 2013 J. Phys. Soc. Jpn. 82 034704 [21] Ma T, Yang F, Yao H and Lin H Q 2014 Phys. Rev. B 90 245114 [22] Wu W, Scherer M M, Honerkamp C and Le Hur K 2013 Phys. Rev. B 87 094521 [23] Jia P, Yang S, Li W, Yang J, Ying T, Li X and Sun X 2022 Phys. Lett. A 442 128175 [24] Jin X, Liu Y, Mondaini R and Rigol M 2022 Phys. Rev. B 106 245117 [25] Wolf S, Gardener T, Le Hur K and Rachel S 2022 Phys. Rev. B 105 L100505 [26] Zhu X, Han W, Feng S and Guo H 2024 Physica B 683 415902 [27] Lin H F, Liu H D, Tao H S and Liu W M 2015 Sci. Rep. 5 9810 [28] Otsuka Y, Yunoki S and Sorella S 2016 Phys. Rev. X 6 011029 [29] Gu Z C, Jiang H C, Sheng D N, Yao H, Balents L and Wen X G 2013 Phys. Rev. B 88 155112 [30] Qin M 2022 Phys. Rev. B 105 035111 [31] Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603 [32] Barthel T, Pineda C and Eisert J 2009 Phys. Rev. A 80 042333 [33] Corboz P, White S R, Vidal G and Troyer M 2011 Phys. Rev. B 84 041108 [34] Dong S J, Wang C, Han Y, Guo G C and He L 2019 Phys. Rev. B 99 195153 [35] Corboz P, Orus R, Bauer B and Vidal G 2010 Phys. Rev. B 81 165104 [36] Kraus C V, Schuch N, Verstraete F and Cirac J I 2010 Phys. Rev. A 81 052338 [37] Vieijra T, Haegeman J, Verstraete F and Vanderstraeten L 2021 Phys. Rev. B 104 235141 [38] Liu W Y, Dong S J, Han Y J, Guo G C and He L 2017 Phys. Rev. B 95 195154 [39] He L, An H, Yang C, Wang F, Chen J, Wang C, Liang W, Dong S, Sun Q, Han W, Liu W, Han Y and Yao W 2018 IEEE TPDS 29 2838 [40] Dong S J, Wang C, Han Y J, Yang C and He L 2020 npj Quantum Mater. 5 [41] Dong S, Zhang H, Wang C, Zhang M, Han Y J and He L 2023 Chin. Phys. Lett. 40 126403 [42] Sandvik A W and Vidal G 2007 Phys. Rev. Lett. 99 220602 [43] Singh S, Pfeifer R N C and Vidal G 2011 Phys. Rev. B 83 115125 [44] Jiang H C 2021 npj Quantum Mater. 6 71 [45] Peng C, Sheng D N and Jiang H C 2025 Phys. Rev. B 111 085108 [46] Morosan E, Zandbergen HW, Dennis B S, Bos JWG, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544 [47] Wang Y, Agterberg D F and Chubukov A 2015 Phys. Rev. Lett. 114 197001 [48] Faye J P L, Sahebsara P and Sénéchal D 2015 Phys. Rev. B 92 085121 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|