Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077102    DOI: 10.1088/1674-1056/adcb20
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice

Hao Zhang(张浩)1, Shaojun Dong(董少钧)2, and Lixin He(何力新)1,2,3,†
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  We investigate the hole-doped Hubbard model on a honeycomb lattice using a fermionic projected entangled pair states (fPEPS) method. Our study reveals the presence of quasi-long-range order of Cooper pairs, characterized by power-law decay of correlation functions with exponents $K>1$. We further analyze the competing phases of superconductivity, specifically the antiferromagnetic (AFM) order and the charge density wave (CDW) order. Our results show that there are domain wall structures when the hole doping $\delta$ is small and the Coulomb parameter $U$ is large. However, these structures disappear as we increase the hole doping $\delta$ or decrease $U$. Furthermore, for small hole doping, the system exhibits AFM order, which diminishes for $\delta > 0.05$. Conversely, as the doping level increases, the CDW order gradually decreases. Notably, a considerable CDW order persists even at higher doping levels. These findings suggest a progressive suppression of the AFM order and a growing prominence of the CDW order with increasing $\delta$.
Keywords:  Hubbard model      honeycomb lattice      superconductivity      fermionic projected entangled pair states  
Received:  24 February 2025      Revised:  09 April 2025      Accepted manuscript online:  10 April 2025
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  74.25.Dw (Superconductivity phase diagrams)  
  73.22.Pr (Electronic structure of graphene)  
  02.70.-c (Computational techniques; simulations)  
Fund: We thank Hongchen Jiang for helpful discussion. Project supported by the National Natural Science Foundation of China (Grant Nos. 12134012 and 12104433).
Corresponding Authors:  Lixin He     E-mail:  helx@ustc.edu.cn

Cite this article: 

Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新) Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice 2025 Chin. Phys. B 34 077102

[1] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[2] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908
[3] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[4] Hubbard J 1963 Proc. R. Soc. Lond. A 276 238
[5] Rozhkov A V and Rakhmanov A L 2011 J. Phys.: Condens. Matter. 23 065601
[6] Kitatani M, Schäfer T, Aoki H and Held K 2019 Phys. Rev. B 99 041115
[7] Qin M, Chung C M, Shi H, Vitali E, Hubig C, Schollwöck U, White S R and Zhang S 2020 Phys. Rev. X 10 031016
[8] Pathak S, Shenoy V B and Baskaran G 2010 Phys. Rev. B 81 085431
[9] Black-Schaffer A M,WuWand Le Hur K 2014 Phys. Rev. B 90 054521
[10] Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F and Lee D H 2012 Phys. Rev. B 85 035414
[11] Xu X Y, Wessel S and Meng Z Y 2016 Phys. Rev. B 94 115105
[12] Jiang S, Mesaros A and Ran Y 2014 Phys. Rev. X 4 031040
[13] Gu Z C, Jiang H C and Baskaran G 2020 Phys. Rev. B 101 205147
[14] Kiesel M L, Platt C, HankeW, Abanin D A and Thomale R 2012 Phys. Rev. B 86 020507
[15] Raghu S, Kivelson S A and Scalapino D J 2010 Phys. Rev. B 81 224505
[16] Honerkamp C 2008 Phys. Rev. Lett. 100 146404
[17] Ying T and Yang S 2020 Phys. Rev. B 102 125125
[18] Wolf S, Schmidt T L and Rachel S 2018 Phys. Rev. B 98 174515
[19] Nandkishore R, Levitov L S and Chubukov A V 2012 Nat. Phys. 8 158
[20] Watanabe T and Ishihara S 2013 J. Phys. Soc. Jpn. 82 034704
[21] Ma T, Yang F, Yao H and Lin H Q 2014 Phys. Rev. B 90 245114
[22] Wu W, Scherer M M, Honerkamp C and Le Hur K 2013 Phys. Rev. B 87 094521
[23] Jia P, Yang S, Li W, Yang J, Ying T, Li X and Sun X 2022 Phys. Lett. A 442 128175
[24] Jin X, Liu Y, Mondaini R and Rigol M 2022 Phys. Rev. B 106 245117
[25] Wolf S, Gardener T, Le Hur K and Rachel S 2022 Phys. Rev. B 105 L100505
[26] Zhu X, Han W, Feng S and Guo H 2024 Physica B 683 415902
[27] Lin H F, Liu H D, Tao H S and Liu W M 2015 Sci. Rep. 5 9810
[28] Otsuka Y, Yunoki S and Sorella S 2016 Phys. Rev. X 6 011029
[29] Gu Z C, Jiang H C, Sheng D N, Yao H, Balents L and Wen X G 2013 Phys. Rev. B 88 155112
[30] Qin M 2022 Phys. Rev. B 105 035111
[31] Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603
[32] Barthel T, Pineda C and Eisert J 2009 Phys. Rev. A 80 042333
[33] Corboz P, White S R, Vidal G and Troyer M 2011 Phys. Rev. B 84 041108
[34] Dong S J, Wang C, Han Y, Guo G C and He L 2019 Phys. Rev. B 99 195153
[35] Corboz P, Orus R, Bauer B and Vidal G 2010 Phys. Rev. B 81 165104
[36] Kraus C V, Schuch N, Verstraete F and Cirac J I 2010 Phys. Rev. A 81 052338
[37] Vieijra T, Haegeman J, Verstraete F and Vanderstraeten L 2021 Phys. Rev. B 104 235141
[38] Liu W Y, Dong S J, Han Y J, Guo G C and He L 2017 Phys. Rev. B 95 195154
[39] He L, An H, Yang C, Wang F, Chen J, Wang C, Liang W, Dong S, Sun Q, Han W, Liu W, Han Y and Yao W 2018 IEEE TPDS 29 2838
[40] Dong S J, Wang C, Han Y J, Yang C and He L 2020 npj Quantum Mater. 5
[41] Dong S, Zhang H, Wang C, Zhang M, Han Y J and He L 2023 Chin. Phys. Lett. 40 126403
[42] Sandvik A W and Vidal G 2007 Phys. Rev. Lett. 99 220602
[43] Singh S, Pfeifer R N C and Vidal G 2011 Phys. Rev. B 83 115125
[44] Jiang H C 2021 npj Quantum Mater. 6 71
[45] Peng C, Sheng D N and Jiang H C 2025 Phys. Rev. B 111 085108
[46] Morosan E, Zandbergen HW, Dennis B S, Bos JWG, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[47] Wang Y, Agterberg D F and Chubukov A 2015 Phys. Rev. Lett. 114 197001
[48] Faye J P L, Sahebsara P and Sénéchal D 2015 Phys. Rev. B 92 085121
[1] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[2] Superconductivity in YbN4H12 under low pressures
Xiang Wang(汪翔), Chenlong Xie(谢晨龙), Haohao Hong(洪浩豪), Yanliang Wei(魏衍亮), Zhao Liu(刘召), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(8): 087401.
[3] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[4] Ground state of electron-doped tt'J model on cylinders: An investigation of finite size and boundary condition effects
Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普). Chin. Phys. B, 2025, 34(8): 087105.
[5] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[6] Momentum-dependent anisotropy of the charge density wave gap in quasi-1D ZrTe3-xSex (x = 0.015)
Renjie Zhang(张任杰), Yudong Hu(胡裕栋), Yiwei Cheng(程以伟), Yigui Zhong(钟益桂), Xuezhi Chen(陈学智), Junqin Li(李俊琴), Kozo Okazaki, Yaobo Huang(黄耀波), Tian Shang(商恬), Shifeng Jin(金士锋), Baiqing Lv(吕佰晴), and Hong Ding(丁洪). Chin. Phys. B, 2025, 34(7): 077106.
[7] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[8] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[9] Anisotropic two-band α-model and its application to layered chalcogenide superconductor NbSe2
Jiang-Ning Zhang(张江宁), Guo Wang(王果), Tian-Yi Han(韩天意), and Hai Huang(黄海). Chin. Phys. B, 2025, 34(5): 057401.
[10] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[11] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[12] Superconductivity in titanium probed by AC magnetic susceptibility to 120 GPa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[13] Regulation of superconductivity in Nb thin films induced by interstitial oxygen atoms
Yuchuan Liu(刘钰川), Ming Yang(杨明), Yun Fan(范云), Zulei Xu(徐祖磊), Yu Wu(吴禹), Yixin Liu(刘以鑫), Wei Peng(彭炜), Gang Mu(牟刚), and Zhi-Rong Lin(林志荣). Chin. Phys. B, 2025, 34(4): 047401.
[14] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[15] Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure
Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037403.
No Suggested Reading articles found!