Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077302    DOI: 10.1088/1674-1056/adcb1e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Role of symmetry in antiferromagnetic topological insulators

Sahar Ghasemi1 and Morad Ebrahimkhas1,2,†
1 Department of Physics, Mahabad Branch, Islamic Azad University, Mahabad, Iran;
2 Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt/Main, Germany
Abstract  In this investigation, we delve into the interplay between strong interactions and intricate topological configurations, leading to emergent quantum states such as magnetic topological insulators. The crux of our research centers on elucidating how lattice symmetry modulates antiferromagnetic quantum Hall phenomena. Utilizing the spinful Harper-Hofstadter model enriched with a next-nearest-neighbor (NNN) hopping term, we discern a half-filling bandgap, paving the way for the manifestation of a quantum Hall insulator characterized by a Chern number, $C = 2$. Upon integrating a checkerboard-patterned staggered potential ($\varDelta $) and the Hubbard interaction ($U$), the system exhibits complex dynamical behaviors. Marginal NNN hopping culminates in a Neél antiferromagnetic Mott insulator. In contrast, intensified hopping results in stripe antiferromagnetic configurations. Moreover, in the regime of limited NNN hopping, a $C = 1$ Neél antiferromagnetic quantum Hall insulator emerges. A salient observation pertains to the manifestation of a $C = 1$ antiferromagnetic quantum Hall insulator when spin-flip mechanisms are not offset by space group symmetries. These findings chart a pathway for further explorations into antiferromagnetic Quantum Hall States.
Keywords:  antiferromagnetic quantum hall insulator      topological phase transitions      Harper-Hofstadter-Hubbard model      lattice symmetry effects  
Received:  20 January 2025      Revised:  23 March 2025      Accepted manuscript online:  10 April 2025
PACS:  73.43.-f (Quantum Hall effects)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.10.-b (General theory and models of magnetic ordering)  
Corresponding Authors:  Morad Ebrahimkhas     E-mail:  ebrahimkhas@gmail.com

Cite this article: 

Sahar Ghasemi and Morad Ebrahimkhas Role of symmetry in antiferromagnetic topological insulators 2025 Chin. Phys. B 34 077302

[1] Cooper N R, Dalibard J and Spielman I B 2019 Rev. Mod. Phys. 91 015005
[2] Aidelsburger M, Nascimbene S and Goldman N 2018 C. R. Physique 19 394
[3] Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanasz-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D and Greiner M 2017 Nature 545 462
[4] Brown P T, Mitra D, Guardado-Sanchez E, Schauß P, Kondov S S, Khatami E, Paiva T, Trivedi N, Huse D A and Bakr W S 2017 Science 357 1385
[5] HofstetterWand Qin T 2018 J. Phys. B: At. Mol. Opt. Phys. 51 082001
[6] Miyake H, Siviloglou G A, Kennedy C J, Butron W C and Ketterle W 2013 Phys. Rev. Lett. 111 185302
[7] Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I and Goldman N 2015 Nat. Phys. 11 162
[8] Aidelsburger M, Atala M, Nascimbene S, Trotzky S, Chen Y A and Bloch I 2011 Phys. Rev. Lett. 107 255301
[9] Köhler T, Góral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311
[10] Eckardt A, Weiss C and Holthaus M 2005 Phys. Rev. Lett. 95 260404
[11] Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O and Arimondo E 2007 Phys. Rev. Lett. 99 220403
[12] Zenesini A, Lignier H, Ciampini D, Morsch O and Arimondo E 2009 Phys. Rev. Lett. 102 100403
[13] Hemmerich A 2010 Phys. Rev. A 81 063626
[14] Struck J, Olschläger C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K andWindpassinger P 2012 Phys. Rev. Lett. 108 225304
[15] Duncan R 1976 Phys. Rev. B 14 2239
[16] Hatsugai Y and Kohmoto M 1990 Phys. Rev. B 42 8282
[17] Jiang K, Zhou S, Dai X and Wang Z 2018 Phys. Rev. Lett. 120 157205
[18] Arun V S, Sohal R, Hickey C and Paramekanti A 2016 Phys. Rev. B 93 115110
[19] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[20] Beugeling W, Everts J C and Morais Smith C 2012 Phys. Rev. B 86 195129
[21] Hatsugai Y and Kohmoto M 1990 Phys. Rev. B 42 8282
[22] He J, Zong Y H, Kou S P, Liang Y and Feng S 2011 Phys. Rev. B 84 035127
[23] Vanhala T I, Siro T, Liang L, Troyer M, Harju A and Törmä P 2016 Phys. Rev. Lett. 116 225305
[24] Tupitsyn I S and Prokofév N V 2019 Phys. Rev. B 99 121113
[25] Ebrahimkhas M 2011 Phys. Lett. A 375 3223
[26] Shahbazy A and Ebrahimkhas M 2019 Chin. J. Phys. 58 273
[27] Cocks D, Orth P P, Rachel S, Buchhold M, Le Hur K and Hofstetter W 2012 Phys. Rev. Lett. 109 205303
[28] Irsigler B, Zheng J H and Hofstetter W 2019 Phys. Rev. Lett. 122 010406
[29] Goldman N, Juzeliunas G, Ohberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[30] Potthoff M and Nolting W 1999 Phys. Rev. B 59 2549
[31] Song Y, Wortis R and Atkinson W A 2008 Phys. Rev. B 77 054202
[32] Zheng J H, Qin T and Hofstetter W 2019 Phys. Rev. B 99 125138
[33] Orth P P, Cocks D, Rachel S, Buchhold M, Hur K L and Hofstetter W 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134004
[34] He L, Ji A and Hofstetter W 2015 Phys. Rev. A 92 023630
[35] Hafez-Torbati M and Hofstetter W 2018 Phys. Rev. B 98 245131
[36] Hafez-Torbati M and Hofstetter W 2019 Phys. Rev. B 100 035133
[37] Snoek M, Titvinidze I, Toke C, Byczuk K and Hofstetter W 2008 New J. Phys. 10 093008
[38] Wang Z and Zhang S C 2012 Phys. Rev. X 2 031008
[39] Fruchart M and Carpentier D 2013 C. R. Physique 14 779
[40] Kohmoto M 1985 Ann. Phys. 160 343
[41] Ebrahimkhas M, Hafez-Torbati M and Hofstetter W 2021 Phys. Rev. B 103 155108
[42] Ebrahimkhas M, Uhrig G S, Hofstetter W and Hafez-Torbati M 2023 Phys. Rev. B 106 205107
[43] van Loon E G C P, Krien F, Hafermann H, Stepanov E A, Lichtenstein A I and Katsnelson M I 2016 Phys. Rev. B 93 155162
[44] Strohmaier N, Greif D, Ordens R J, Tarruell L, Moritz H and Esslinger T 2010 Phys. Rev. Lett. 104 080401
[45] Hafez-Torbati M, Zheng J H, Irsigler B and Hofstetter W 2020 Phys. Rev. B 101 245159
[46] Amaricci A, Budich J C, Capone M, Trauzettel B and Sangiovanni G 2015 Phys. Rev. Lett. 114 185701
[47] Crippa L, Amaricci A, Wagner N, Sangiovanni G, Budich J C and Capone M 2020 Phys. Rev. Res. 2 012023
[48] Golubeva A, Sotnikov A and Hofstetter W 2015 Phys. Rev. A 92 043623
[1] Random flux manipulating topological phase transitions in Chern insulators
Jinkun Wang(王锦坤) and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2025, 34(6): 067301.
[2] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[3] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[4] Valley modulation and topological phase transition in staggered kagome ferromagnets
Yuheng Xing(邢玉恒), Wenjuan Qiu(邱文娟), Xinxing Wu(吴新星), and Yue Tan(谭悦). Chin. Phys. B, 2024, 33(12): 127503.
[5] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
No Suggested Reading articles found!