Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 043701    DOI: 10.1088/1674-1056/26/4/043701

Off-site trimer superfluid on a one-dimensional optical lattice

Er-Nv Fan(范二女)1, Tony C Scott1,2, Wan-Zhou Zhang(张万舟)1
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
2 Near India Pvt Ltd, No. 71/72, Jyoti Nivas College Road, Koramangala, Bangalore 560095, India
Abstract  The Bose-Hubbard model with an effective off-site three-body tunneling, characterized by jumps towards one another, between one atom on a site and a pair atoms on the neighborhood site, is studied systematically on a one-dimensional (1D) lattice, by using the density matrix renormalization group method. The off-site trimer superfluid, condensing at momentum k=0, emerges in the softcore Bose-Hubbard model but it disappears in the hardcore Bose-Hubbard model. Our results numerically verify that the off-site trimer superfluid phase derived in the momentum space from [Phys. Rev. A 81, 011601(R) (2010)] is stable in the thermodynamic limit. The off-site trimer superfluid phase, the partially off-site trimer superfluid phase and the Mott insulator phase are found, as well as interesting phase transitions, such as the continuous or first-order phase transition from the trimer superfluid phase to the Mott insulator phase. Our results are helpful in realizing this novel off-site trimer superfluid phase by cold atom experiments.
Keywords:  Bose-Hubbard model      off-site trimer superfluid      density matrix renormalization group method  
Received:  28 September 2016      Revised:  03 January 2017      Accepted manuscript online: 
PACS:  37.10.Jk (Atoms in optical lattices)  
  05.30.Jp (Boson systems)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305113) and the Project GDW201400042 for the "High End Foreign Experts Program".
Corresponding Authors:  Wan-Zhou Zhang     E-mail:

Cite this article: 

Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟) Off-site trimer superfluid on a one-dimensional optical lattice 2017 Chin. Phys. B 26 043701

[1] Greiner M, Mandel O, Dsslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[2] Greiner M and Föllin S 2008 Nature 453 736
[3] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[4] Bloch I 2005 Nat. Phys. 1 23
[5] Sun J F, Cui G D, Jiang B N, Qian J and Wang Y Z 2013 Chin. Phys. B 22 110307
[6] Zhang W Z, Yin R X and Wang Y C 2013 Phys. Rev. B 88 174515
[7] Wang Y C, Zhang W Z, Shao H and Guo W A 2013 Chin. Phys. B 22 096702
[8] Greschner S and Santos L 2015 Phys. Rev. Lett. 115 053002
[9] Zhang W Z, Greschner S, Fan E N, Scott T and Zhang Y B 2016 arXiv: 1609.02594v2 [cond-mat.quant-gas]
[10] Lee Y W and Yang M F 2010 Phys. Rev. A 81 061604
[11] Chen Y C, Ng K K and Yang M F 2011 Phys. Rev. B 84 092503
[12] Ng K K and Yang M F 2011 Phys. Rev. B 83 100511
[13] Zhou X F, Zhang Y S and Guo G C 2009 Phys. Rev. A 80 013605
[14] Jiang H C, Fu L and Xu C K 2012 Phys. Rev. B 86 045129
[15] Dutta O, Eckardt A, Hauke P, Malomed B and Lewenstein M 2011 New J. Phys. 13 023019
[16] Melko R G and Sandvik A W 2005 Phys. Rev. E 72 026702
[17] Sandvik A W 2007 Phys. Rev. Lett. 98 227202
[18] Sandvik A W and Melko R G 2006 Ann. Phys. 321 1651
[19] Valiente M, Petrosyan D and Saenz A 2010 Phys. Rev. A 81 011601
[20] You Y Z, Chen Z, Sun X Q and Zhai H 2012 Phys. Rev. Lett. 109 265302
[21] Gross N, Shotan Z, Kokkelmans S and Khaykovich L 2009 Phys. Rev. Lett. 103 163202
[22] Gross N, Shotan Z, Kokkelmans S and Khaykovich L 2010 Phys. Rev. Lett. 105 103203
[23] Pollack S E, Dries D and Hulet R G 2009 Science 326 1683
[24] Zaccanti M, Deissler B, D'Errico C, Fattori M, Jona-Lasinio M, Müller S, Roati G, Inguscio M and Modugno G 2009 Nat. Phys. 5 586
[25] Wild R J, Makotyn P, Pino J M, Cornell E A and Jin D S 2012 Phys. Rev. Lett. 108 145305
[26] Berninger M 2011 Phys. Rev. Lett. 107 120401
[27] Huang B, Sidorenkov L A, Grimm R and Hutson J M 2014 Phys. Rev. Lett. 112 190401
[28] Zhang W Z, Li R, Zhang W X, Duan C B and Scott T C 2014 Phys. Rev. A 90 033622
[29] Zhang W Z, Yang Y, Guo L J, Ding C X and Scott T C 2015 Phys. Rev. A 91 033613
[30] White S R 1992 Phys. Rev. Lett. 69 2863
[31] Schollwöck U 2005 Rev. Mod. Phys. 77 259
[32] White S R 1993 Phys. Rev. B 48 10345
[33] Batrouni G G and Scalettar R T 2000 Phys. Rev. Lett. 84 1599
[34] Mishra T, Pai R V, Ramanan S, Luthra M S and Das B P 2009 Phys. Rev. A 80 043614
[35] Iskin M 2011 Phys. Rev. A 83 051606
[36] Ejima S, Fehske H, Gebhard F, Münster K Z, Knap M, Arrigoni E and Linden W V D 2012 Phys. Rev. A 85 053644
[37] Kuklov A, Prokof'ev N and Svistunov B 2004 Phys. Rev. Lett. 92 050402
[38] Haldane F D M 1981 Phys. Rev. Lett. 47 1840
[39] Kühner T D, White S R and Monien H 2000 Phys. Rev. B 61 12474
[40] Zhang W Z, Li L X and Guo W A 2010 Phys. Rev. B 82 134536
[41] Kuklov A, Prokof'ev N and Svistunov B 2004 Phys. Rev. Lett. 93 230402
[42] Sen A and Sandvik A W 2010 Phys. Rev. B 82 174428
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Extended Bose–Hubbard model with pair hopping on triangular lattice
Wang Yan-Cheng (王艳成), Zhang Wan-Zhou (张万舟), Shao Hui (邵慧), Guo Wen-An (郭文安). Chin. Phys. B, 2013, 22(9): 096702.
[3] Alternative routes to equivalent classical models of a quantum system
M. Radonjić, Slobodan Prvanović, Nikola Burić. Chin. Phys. B, 2012, 21(12): 120301.
No Suggested Reading articles found!