|
|
Off-site trimer superfluid on a one-dimensional optical lattice |
Er-Nv Fan(范二女)1, Tony C Scott1,2, Wan-Zhou Zhang(张万舟)1 |
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China; 2 Near India Pvt Ltd, No. 71/72, Jyoti Nivas College Road, Koramangala, Bangalore 560095, India |
|
|
Abstract The Bose-Hubbard model with an effective off-site three-body tunneling, characterized by jumps towards one another, between one atom on a site and a pair atoms on the neighborhood site, is studied systematically on a one-dimensional (1D) lattice, by using the density matrix renormalization group method. The off-site trimer superfluid, condensing at momentum k=0, emerges in the softcore Bose-Hubbard model but it disappears in the hardcore Bose-Hubbard model. Our results numerically verify that the off-site trimer superfluid phase derived in the momentum space from [Phys. Rev. A 81, 011601(R) (2010)] is stable in the thermodynamic limit. The off-site trimer superfluid phase, the partially off-site trimer superfluid phase and the Mott insulator phase are found, as well as interesting phase transitions, such as the continuous or first-order phase transition from the trimer superfluid phase to the Mott insulator phase. Our results are helpful in realizing this novel off-site trimer superfluid phase by cold atom experiments.
|
Received: 28 September 2016
Revised: 03 January 2017
Accepted manuscript online:
|
PACS:
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
05.30.Jp
|
(Boson systems)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305113) and the Project GDW201400042 for the "High End Foreign Experts Program". |
Corresponding Authors:
Wan-Zhou Zhang
E-mail: zhangwanzhou@tyut.edu.cn
|
Cite this article:
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟) Off-site trimer superfluid on a one-dimensional optical lattice 2017 Chin. Phys. B 26 043701
|
[1] |
Greiner M, Mandel O, Dsslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
|
[2] |
Greiner M and Föllin S 2008 Nature 453 736
|
[3] |
Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
|
[4] |
Bloch I 2005 Nat. Phys. 1 23
|
[5] |
Sun J F, Cui G D, Jiang B N, Qian J and Wang Y Z 2013 Chin. Phys. B 22 110307
|
[6] |
Zhang W Z, Yin R X and Wang Y C 2013 Phys. Rev. B 88 174515
|
[7] |
Wang Y C, Zhang W Z, Shao H and Guo W A 2013 Chin. Phys. B 22 096702
|
[8] |
Greschner S and Santos L 2015 Phys. Rev. Lett. 115 053002
|
[9] |
Zhang W Z, Greschner S, Fan E N, Scott T and Zhang Y B 2016 arXiv: 1609.02594v2 [cond-mat.quant-gas]
|
[10] |
Lee Y W and Yang M F 2010 Phys. Rev. A 81 061604
|
[11] |
Chen Y C, Ng K K and Yang M F 2011 Phys. Rev. B 84 092503
|
[12] |
Ng K K and Yang M F 2011 Phys. Rev. B 83 100511
|
[13] |
Zhou X F, Zhang Y S and Guo G C 2009 Phys. Rev. A 80 013605
|
[14] |
Jiang H C, Fu L and Xu C K 2012 Phys. Rev. B 86 045129
|
[15] |
Dutta O, Eckardt A, Hauke P, Malomed B and Lewenstein M 2011 New J. Phys. 13 023019
|
[16] |
Melko R G and Sandvik A W 2005 Phys. Rev. E 72 026702
|
[17] |
Sandvik A W 2007 Phys. Rev. Lett. 98 227202
|
[18] |
Sandvik A W and Melko R G 2006 Ann. Phys. 321 1651
|
[19] |
Valiente M, Petrosyan D and Saenz A 2010 Phys. Rev. A 81 011601
|
[20] |
You Y Z, Chen Z, Sun X Q and Zhai H 2012 Phys. Rev. Lett. 109 265302
|
[21] |
Gross N, Shotan Z, Kokkelmans S and Khaykovich L 2009 Phys. Rev. Lett. 103 163202
|
[22] |
Gross N, Shotan Z, Kokkelmans S and Khaykovich L 2010 Phys. Rev. Lett. 105 103203
|
[23] |
Pollack S E, Dries D and Hulet R G 2009 Science 326 1683
|
[24] |
Zaccanti M, Deissler B, D'Errico C, Fattori M, Jona-Lasinio M, Müller S, Roati G, Inguscio M and Modugno G 2009 Nat. Phys. 5 586
|
[25] |
Wild R J, Makotyn P, Pino J M, Cornell E A and Jin D S 2012 Phys. Rev. Lett. 108 145305
|
[26] |
Berninger M 2011 Phys. Rev. Lett. 107 120401
|
[27] |
Huang B, Sidorenkov L A, Grimm R and Hutson J M 2014 Phys. Rev. Lett. 112 190401
|
[28] |
Zhang W Z, Li R, Zhang W X, Duan C B and Scott T C 2014 Phys. Rev. A 90 033622
|
[29] |
Zhang W Z, Yang Y, Guo L J, Ding C X and Scott T C 2015 Phys. Rev. A 91 033613
|
[30] |
White S R 1992 Phys. Rev. Lett. 69 2863
|
[31] |
Schollwöck U 2005 Rev. Mod. Phys. 77 259
|
[32] |
White S R 1993 Phys. Rev. B 48 10345
|
[33] |
Batrouni G G and Scalettar R T 2000 Phys. Rev. Lett. 84 1599
|
[34] |
Mishra T, Pai R V, Ramanan S, Luthra M S and Das B P 2009 Phys. Rev. A 80 043614
|
[35] |
Iskin M 2011 Phys. Rev. A 83 051606
|
[36] |
Ejima S, Fehske H, Gebhard F, Münster K Z, Knap M, Arrigoni E and Linden W V D 2012 Phys. Rev. A 85 053644
|
[37] |
Kuklov A, Prokof'ev N and Svistunov B 2004 Phys. Rev. Lett. 92 050402
|
[38] |
Haldane F D M 1981 Phys. Rev. Lett. 47 1840
|
[39] |
Kühner T D, White S R and Monien H 2000 Phys. Rev. B 61 12474
|
[40] |
Zhang W Z, Li L X and Guo W A 2010 Phys. Rev. B 82 134536
|
[41] |
Kuklov A, Prokof'ev N and Svistunov B 2004 Phys. Rev. Lett. 93 230402
|
[42] |
Sen A and Sandvik A W 2010 Phys. Rev. B 82 174428
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|