Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030601    DOI: 10.1088/1674-1056/ad1986
INSTRUMENTATION AND MEASUREMENT Prev   Next  

A Yb optical clock with a lattice power enhancement cavity

Chunyun Wang(王春云), Yuan Yao(姚远), Haosen Shi(师浩森), Hongfu Yu(于洪浮),Longsheng Ma(马龙生), and Yanyi Jiang(蒋燕义)
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock. It is demonstrated that the intra-cavity lattice power can be increased by about 45 times, and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity. Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to ~ 1×10-18. By probing the ytterbium atoms trapped in the power-enhanced optical lattice, we obtain a 4.3 Hz-linewidth Rabi spectrum, which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock. We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements, which is -0.46(62) mHz. This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344 μm.
Keywords:  optical atomic clock      optical lattice      optical cavity      Stark shift  
Received:  06 November 2023      Revised:  19 December 2023      Accepted manuscript online:  29 December 2023
PACS:  06.20.fb (Standards and calibration)  
  42.79.Gn (Optical waveguides and couplers)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
  37.10.Jk (Atoms in optical lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12334020 and 11927810) and the National Key Research and Development Program of China (Grant No. 2022YFB3904001).
Corresponding Authors:  Yuan Yao, Yanyi Jiang     E-mail:  yyao@lps.ecnu.edu.cn;yyjiang@phy.ecnu.edu.cn

Cite this article: 

Chunyun Wang(王春云), Yuan Yao(姚远), Haosen Shi(师浩森), Hongfu Yu(于洪浮),Longsheng Ma(马龙生), and Yanyi Jiang(蒋燕义) A Yb optical clock with a lattice power enhancement cavity 2024 Chin. Phys. B 33 030601

[1] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[2] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[3] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photonics 13 714
[4] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[5] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photonics 14 411
[6] Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S and Porsev S G 2019 Nature 567 204
[7] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630
[8] Beloy K, Bodine M I, Bothwell T, et al. 2021 Nature 591 564
[9] Wcisƚo P, Ablewski P, Beloy K, Bilicki S, Bober M, Brown R, Fasano R, Ciuryƚo R, Hachisu H, Ido T, Lodewyck J, Ludlow A, McGrew W, Morzyński P, Nicolodi D, Schioppo M, Sekido M, Le Targat R, Wolf P, Zhang X, Zjawin B and Zawada M 2018 Sci. Adv. 4 eaau4869
[10] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420
[11] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2017 Phys. Rev. D 94 124043
[12] https://www.bipm.org/documents/20126/35554894/CCTF+Strategy/7cf0f648-2afe-d15c-0909-1f03406bbb8f
[13] CCTF 2021 Roadmap towards the redefinition of the SI second
[14] Ai D, Qiao H, Zhang S, Luo L M, Sun C Y, Zhang S, Peng C Q, Qi Q C, Jin T Y, Zhou M and Xu X Y 2020 Chin. Phys. B 29 090601
[15] Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
[16] Brown R C, Phillips N B, Beloy K, McGrew W F, Schioppo M, Fasano R J, Milani G, Zhang X, Hinkley N, Leopardi H, Yoon T H, Nicolodi D, Fortier T M and Ludlow A D 2017 Phys. Rev. Lett. 119 253001
[17] Nemitz N, Jorgensen A A, Yanagimoto R, Bregolin F and Katori H 2019 Phys. Rev. A 99 033424
[18] Ushijima I, Takamoto M and Katori H 2018 Phys. Rev. Lett. 121 263202
[19] Kim K, Aeppli A, Bothwell T and Ye J 2023 Phys. Rev. Lett. 130 113203
[20] Kim H, Heo M S, Park C Y, Yu D H and Lee W K 2021 Metrologia 58 055007
[21] Pizzocaro M, Bregolin F, Barbieri P, Rauf B, Levi F and Calonico D 2020 Metrologia 57 035007
[22] Koller S B, Grotti J, Vogt S T, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat C H 2017 Phys. Rev. Lett. 118 073601
[23] Zeng M, Huang Y, Zhang B, Hao Y, Ma Z, Hu R, Zhang H, Chen Z, Wang M, Guan H and Gao K 2023 Phys. Rev. Appl. 19 064004
[24] Yan W, Yao Y, Sun Y, Chad H W, Jiang Y and Ma L 2019 Chin. Opt. Lett. 17 040201
[25] Sun Y, Yao Y, Hao Y, Yu H, Jiang Y and Ma L 2020 Chin. Opt. Lett. 18 070201
[26] Fasano R J, Chen Y J, McGrew W F, Brand W J, Fox R and Ludlow A D 2021 Phys. Rev. Appl. 15 044016
[27] Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409
[28] Ye J 1997 Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards (PhD thesis)
[29] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
[30] Hao Y, Yao Y, Shi H, Yu H, Jiang Y and Ma L 2022 Chin. Opt. Lett. 20 120201
[31] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G and Wineland D J 2002 Phys. Rev. A 47 3554
[32] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703
[33] Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S and Oates C W 2011 Nat. Photonics 5 158
[34] Lu B, Su Z, Yang T, Lin Y, Wang Q, Li Y, Meng F, Lin B, Li T and Fang Z 2022 Chin. Phys. Lett. 39 080601
[35] Pizzocaro M, Thoumany P, Rauf B, Bregolin F, Milani G, Clivati C, Costanzo G A, Levi F and Calonico D 2017 Metrologia 54 102
[1] A proposal for detecting weak electromagnetic waves around 2.6 μm wavelength with Sr optical clock
Ruo-Shui Han(韩弱水), Wei Wang(王伟), and Tao Wang(汪涛). Chin. Phys. B, 2024, 33(4): 043201.
[2] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[3] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[4] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[5] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[6] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[7] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[8] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[9] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[10] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[11] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[12] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[13] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[14] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[15] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
No Suggested Reading articles found!