INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
A Yb optical clock with a lattice power enhancement cavity |
Chunyun Wang(王春云), Yuan Yao(姚远)†, Haosen Shi(师浩森), Hongfu Yu(于洪浮),Longsheng Ma(马龙生), and Yanyi Jiang(蒋燕义)‡ |
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China |
|
|
Abstract We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock. It is demonstrated that the intra-cavity lattice power can be increased by about 45 times, and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity. Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to ~ 1×10-18. By probing the ytterbium atoms trapped in the power-enhanced optical lattice, we obtain a 4.3 Hz-linewidth Rabi spectrum, which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock. We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements, which is -0.46(62) mHz. This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344 μm.
|
Received: 06 November 2023
Revised: 19 December 2023
Accepted manuscript online: 29 December 2023
|
PACS:
|
06.20.fb
|
(Standards and calibration)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12334020 and 11927810) and the National Key Research and Development Program of China (Grant No. 2022YFB3904001). |
Corresponding Authors:
Yuan Yao, Yanyi Jiang
E-mail: yyao@lps.ecnu.edu.cn;yyjiang@phy.ecnu.edu.cn
|
Cite this article:
Chunyun Wang(王春云), Yuan Yao(姚远), Haosen Shi(师浩森), Hongfu Yu(于洪浮),Longsheng Ma(马龙生), and Yanyi Jiang(蒋燕义) A Yb optical clock with a lattice power enhancement cavity 2024 Chin. Phys. B 33 030601
|
[1] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87 [2] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201 [3] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photonics 13 714 [4] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001 [5] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photonics 14 411 [6] Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S and Porsev S G 2019 Nature 567 204 [7] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630 [8] Beloy K, Bodine M I, Bothwell T, et al. 2021 Nature 591 564 [9] Wcisƚo P, Ablewski P, Beloy K, Bilicki S, Bober M, Brown R, Fasano R, Ciuryƚo R, Hachisu H, Ido T, Lodewyck J, Ludlow A, McGrew W, Morzyński P, Nicolodi D, Schioppo M, Sekido M, Le Targat R, Wolf P, Zhang X, Zjawin B and Zawada M 2018 Sci. Adv. 4 eaau4869 [10] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420 [11] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2017 Phys. Rev. D 94 124043 [12] https://www.bipm.org/documents/20126/35554894/CCTF+Strategy/7cf0f648-2afe-d15c-0909-1f03406bbb8f [13] CCTF 2021 Roadmap towards the redefinition of the SI second [14] Ai D, Qiao H, Zhang S, Luo L M, Sun C Y, Zhang S, Peng C Q, Qi Q C, Jin T Y, Zhou M and Xu X Y 2020 Chin. Phys. B 29 090601 [15] Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005 [16] Brown R C, Phillips N B, Beloy K, McGrew W F, Schioppo M, Fasano R J, Milani G, Zhang X, Hinkley N, Leopardi H, Yoon T H, Nicolodi D, Fortier T M and Ludlow A D 2017 Phys. Rev. Lett. 119 253001 [17] Nemitz N, Jorgensen A A, Yanagimoto R, Bregolin F and Katori H 2019 Phys. Rev. A 99 033424 [18] Ushijima I, Takamoto M and Katori H 2018 Phys. Rev. Lett. 121 263202 [19] Kim K, Aeppli A, Bothwell T and Ye J 2023 Phys. Rev. Lett. 130 113203 [20] Kim H, Heo M S, Park C Y, Yu D H and Lee W K 2021 Metrologia 58 055007 [21] Pizzocaro M, Bregolin F, Barbieri P, Rauf B, Levi F and Calonico D 2020 Metrologia 57 035007 [22] Koller S B, Grotti J, Vogt S T, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat C H 2017 Phys. Rev. Lett. 118 073601 [23] Zeng M, Huang Y, Zhang B, Hao Y, Ma Z, Hu R, Zhang H, Chen Z, Wang M, Guan H and Gao K 2023 Phys. Rev. Appl. 19 064004 [24] Yan W, Yao Y, Sun Y, Chad H W, Jiang Y and Ma L 2019 Chin. Opt. Lett. 17 040201 [25] Sun Y, Yao Y, Hao Y, Yu H, Jiang Y and Ma L 2020 Chin. Opt. Lett. 18 070201 [26] Fasano R J, Chen Y J, McGrew W F, Brand W J, Fox R and Ludlow A D 2021 Phys. Rev. Appl. 15 044016 [27] Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409 [28] Ye J 1997 Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards (PhD thesis) [29] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97 [30] Hao Y, Yao Y, Shi H, Yu H, Jiang Y and Ma L 2022 Chin. Opt. Lett. 20 120201 [31] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G and Wineland D J 2002 Phys. Rev. A 47 3554 [32] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703 [33] Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S and Oates C W 2011 Nat. Photonics 5 158 [34] Lu B, Su Z, Yang T, Lin Y, Wang Q, Li Y, Meng F, Lin B, Li T and Fang Z 2022 Chin. Phys. Lett. 39 080601 [35] Pizzocaro M, Thoumany P, Rauf B, Bregolin F, Milani G, Clivati C, Costanzo G A, Levi F and Calonico D 2017 Metrologia 54 102 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|