| SPECIAL TOPIC — Advances in thorium nuclear optical clocks |
Prev
Next
|
|
|
Prediction of Ig,6d3/2 →Ig,7p1/2, Ig,7s1/2 →Ig,7p1/2 and Ig,7p1/2 →Im,7s1/2 transition frequencies in 229Th3+ ion |
| Shi-Cheng Yu(余师成)1,2, Cheng-Bin Li(李承斌)1,†, and Lei She(佘磊)1,3,‡ |
1 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Wuhan Institute of Quantum Technology, Wuhan 430206, China |
|
|
|
|
Abstract The $^{229}$Th nucleus has attracted considerable attention due to the existence of its low-energy isomeric state; however, direct laser excitation in ionic systems poses significant challenges for current laser technologies. In the $^{229}$Th$^{3+}$ ion, the electronic bridge (EB) process enables the conversion of direct laser excitation into an effective two-photon process ($I_{\rm g},6{\rm d}_{3/2}\rightarrow I_{\rm g},7{\rm p}_{1/2}\rightarrow I_{\rm m},7{\rm s}_{1/2}$), thereby circumventing the requirement for laser radiation at 148 nm. In this work, we employ many-body perturbation theory (MBPT) to calculate the hyperfine structure constants and field shift factors for several low-lying excited states of the $^{229}$Th$^{3+}$ ion. By combining these theoretical results with previously reported experimental data, we predict three transition frequencies associated with the EB process in the $^{229}$Th$^{3+}$ ion and identify the most suitable transition pathway for EB-assisted nuclear excitation.
|
Received: 26 May 2025
Revised: 14 August 2025
Accepted manuscript online: 28 August 2025
|
|
PACS:
|
37.10.Vz
|
(Mechanical effects of light on atoms, molecules, and ions)
|
| |
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
| |
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
| |
31.30.Gs
|
(Hyperfine interactions and isotope effects)
|
|
| Fund: This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0920403) and the National Key Research and Development Program of China (Grant No. 2022YFB3904002). |
Corresponding Authors:
Cheng-Bin Li, Lei She
E-mail: cbli@apm.ac.cn;shelei@apm.ac.cn
|
Cite this article:
Shi-Cheng Yu(余师成), Cheng-Bin Li(李承斌), and Lei She(佘磊) Prediction of Ig,6d3/2 →Ig,7p1/2, Ig,7s1/2 →Ig,7p1/2 and Ig,7p1/2 →Im,7s1/2 transition frequencies in 229Th3+ ion 2026 Chin. Phys. B 35 023701
|
[1] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P 2015 Rev. Mod. Phys. 87 637 [2] Tkalya E, Varlamov V, Lomonosov V and Nikulin S 1996 Phys. Scr. 53 296 [3] Peik E and Tamm C 2003 Europhys. Lett. 61 181 [4] Thirolf P G, Kraemer S, Moritz D and Scharl K 2024 Eur. Phys. J. Spec. Top. 233 1113 [5] Tong X, Hua L, Hua X and Liu X 2025 Natl. Sci. Rev. nwaf083 [6] Nickerson B S, Pimon M, Bilous P V, Gugler J, Beeks K, Sikorsky T, Mohn P, Schumm T and Pálffy A 2020 Phys. Rev. Lett. 125 032501 [7] Tiedau J, Okhapkin M, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col L T, Schneider F, Leitner A, Pressler M, Kazakov G, Beeks K, Sikorsky T and Schumm T 2024 Phys. Rev. Lett. 132 182501 [8] Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran Tan H, Derevianko A and Hudson E R 2024 Phys. Rev. Lett. 133 013201 [9] Zhang C, Ooi T, Higgins J S, Doyle J F, et al. 2024 Nature 633 63 [10] Zhang C, von der Wense L, Doyle J F, et al. 2024 Nature 636 603 [11] Jackson R A, Amaral J B, Valerio M E G, DeMille D P and Hudson E R 2009 J. Phys. Condens. Matt. 21 325403 [12] Dessovic P, Mohn P, Jackson R A, Winkler G, Schreitl M, Kazakov G and Schumm T 2014 J. Phys. Condens. Matt. 26 105402 [13] Kazakov G A, Litvinov A N, Romanenko V I, Yatsenko L P, Romanenko A V, Schreitl M, Winkler G and Schumm T 2012 New J. Phys. 14 083019 [14] Campbell C J, Radnaev A G, Kuzmich A, Dzuba V A, Flambaum V V and Derevianko A 2012 Phys. Rev. Lett. 108 120802 [15] Beloy K 2023 Phys. Rev. Lett. 130 103201 [16] Beeks K, Kazakov G A, Schaden F, et al. 2025 Nat. Commun. 16 9147 [17] Safronova M, Porsev S, Kozlov M, Thielking J, Okhapkin M, Głowacki P, Meier D and Peik E 2018 Phys. Rev. Lett. 121 213001 [18] Thielking J, Okhapkin M V, Głowacki P, Meier D M, Von Der Wense L, Seiferle B, Düllmann C E, Thirolf P G and Peik E 2018 Nature 556 321 [19] KälberW, Rink J, Bekk K, FaubelW, Göring S, Meisel G, Rebel H and Thompson R C 1989 Z. Phys. A 334 103 [20] Porsev S, Safronova M and Kozlov M 2021 Phys. Rev. Lett. 127 253001 [21] Porsev S G and Flambaum V V 2010 Phys. Rev. A 81 032504 [22] Li L, Li Z, Wang C, Gan W T, Hua X and Tong X 2023 Nucl. Sci. Technol. 34 24 [23] Klinkenberg P F A 1988 Physica B+C 151 552 [24] Li F C, Qiao H X, Tang Y B and Shi T Y 2022 J. Quant. Spectrosc. Radiat. Transfer 288 108241 [25] Yamaguchi A, Shigekawa Y, Haba H, Kikunaga H, Shirasaki K, Wada M and Katori H 2024 Nature 629 62 [26] Dzuba V and Flambaum V 2023 Phys. Rev. Lett. 131 263002 [27] Campbell C J, Radnaev A G and Kuzmich A 2011 Phys. Rev. Lett. 106 223001 [28] Safronova M S, Safronova U I, Radnaev A G, Campbell C J and Kuzmich A 2013 Phys. Rev. A 88 060501 [29] Li F C, Qiao H X, Tang Y B and Shi T Y 2021 Phys. Rev. A 104 062808 [30] Radnaev A G, Campbell C J and Kuzmich A 2012 Phys. Rev. A 86 060501 [31] Si R, Shi C, Xue N, Kong X, Chen C, Tu B and Ma Y G 2025 Sci. China Phys. Mech. Astron. 68 272011 [32] WangW, Zou F, Fritzsche S and Li Y 2024 Phys. Rev. Lett. 133 223001 [33] Shabaev V, Glazov D, Ryzhkov A, Brandau C, Plunien G, Quint W, Volchkova A and Zinenko D 2022 Phys. Rev. Lett. 128 043001 [34] Von Der Wense L, Bilous P V, Seiferle B, Stellmer S, Weitenberg J, Thirolf P G, Pálffy A and Kazakov G 2020 Eur. Phys. J. A 56 176 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|