Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 023701    DOI: 10.1088/1674-1056/ae0016
SPECIAL TOPIC — Advances in thorium nuclear optical clocks Prev   Next  

Prediction of Ig,6d3/2Ig,7p1/2, Ig,7s1/2Ig,7p1/2 and Ig,7p1/2Im,7s1/2 transition frequencies in 229Th3+ ion

Shi-Cheng Yu(余师成)1,2, Cheng-Bin Li(李承斌)1,†, and Lei She(佘磊)1,3,‡
1 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Wuhan Institute of Quantum Technology, Wuhan 430206, China
Abstract  The $^{229}$Th nucleus has attracted considerable attention due to the existence of its low-energy isomeric state; however, direct laser excitation in ionic systems poses significant challenges for current laser technologies. In the $^{229}$Th$^{3+}$ ion, the electronic bridge (EB) process enables the conversion of direct laser excitation into an effective two-photon process ($I_{\rm g},6{\rm d}_{3/2}\rightarrow I_{\rm g},7{\rm p}_{1/2}\rightarrow I_{\rm m},7{\rm s}_{1/2}$), thereby circumventing the requirement for laser radiation at 148 nm. In this work, we employ many-body perturbation theory (MBPT) to calculate the hyperfine structure constants and field shift factors for several low-lying excited states of the $^{229}$Th$^{3+}$ ion. By combining these theoretical results with previously reported experimental data, we predict three transition frequencies associated with the EB process in the $^{229}$Th$^{3+}$ ion and identify the most suitable transition pathway for EB-assisted nuclear excitation.
Keywords:  thorium nuclear clock      electronic bridge process      nuclear hyperfine mixing  
Received:  26 May 2025      Revised:  14 August 2025      Accepted manuscript online:  28 August 2025
PACS:  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.30.Gs (Hyperfine interactions and isotope effects)  
Fund: This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0920403) and the National Key Research and Development Program of China (Grant No. 2022YFB3904002).
Corresponding Authors:  Cheng-Bin Li, Lei She     E-mail:  cbli@apm.ac.cn;shelei@apm.ac.cn

Cite this article: 

Shi-Cheng Yu(余师成), Cheng-Bin Li(李承斌), and Lei She(佘磊) Prediction of Ig,6d3/2Ig,7p1/2, Ig,7s1/2Ig,7p1/2 and Ig,7p1/2Im,7s1/2 transition frequencies in 229Th3+ ion 2026 Chin. Phys. B 35 023701

[1] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P 2015 Rev. Mod. Phys. 87 637
[2] Tkalya E, Varlamov V, Lomonosov V and Nikulin S 1996 Phys. Scr. 53 296
[3] Peik E and Tamm C 2003 Europhys. Lett. 61 181
[4] Thirolf P G, Kraemer S, Moritz D and Scharl K 2024 Eur. Phys. J. Spec. Top. 233 1113
[5] Tong X, Hua L, Hua X and Liu X 2025 Natl. Sci. Rev. nwaf083
[6] Nickerson B S, Pimon M, Bilous P V, Gugler J, Beeks K, Sikorsky T, Mohn P, Schumm T and Pálffy A 2020 Phys. Rev. Lett. 125 032501
[7] Tiedau J, Okhapkin M, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col L T, Schneider F, Leitner A, Pressler M, Kazakov G, Beeks K, Sikorsky T and Schumm T 2024 Phys. Rev. Lett. 132 182501
[8] Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran Tan H, Derevianko A and Hudson E R 2024 Phys. Rev. Lett. 133 013201
[9] Zhang C, Ooi T, Higgins J S, Doyle J F, et al. 2024 Nature 633 63
[10] Zhang C, von der Wense L, Doyle J F, et al. 2024 Nature 636 603
[11] Jackson R A, Amaral J B, Valerio M E G, DeMille D P and Hudson E R 2009 J. Phys. Condens. Matt. 21 325403
[12] Dessovic P, Mohn P, Jackson R A, Winkler G, Schreitl M, Kazakov G and Schumm T 2014 J. Phys. Condens. Matt. 26 105402
[13] Kazakov G A, Litvinov A N, Romanenko V I, Yatsenko L P, Romanenko A V, Schreitl M, Winkler G and Schumm T 2012 New J. Phys. 14 083019
[14] Campbell C J, Radnaev A G, Kuzmich A, Dzuba V A, Flambaum V V and Derevianko A 2012 Phys. Rev. Lett. 108 120802
[15] Beloy K 2023 Phys. Rev. Lett. 130 103201
[16] Beeks K, Kazakov G A, Schaden F, et al. 2025 Nat. Commun. 16 9147
[17] Safronova M, Porsev S, Kozlov M, Thielking J, Okhapkin M, Głowacki P, Meier D and Peik E 2018 Phys. Rev. Lett. 121 213001
[18] Thielking J, Okhapkin M V, Głowacki P, Meier D M, Von Der Wense L, Seiferle B, Düllmann C E, Thirolf P G and Peik E 2018 Nature 556 321
[19] KälberW, Rink J, Bekk K, FaubelW, Göring S, Meisel G, Rebel H and Thompson R C 1989 Z. Phys. A 334 103
[20] Porsev S, Safronova M and Kozlov M 2021 Phys. Rev. Lett. 127 253001
[21] Porsev S G and Flambaum V V 2010 Phys. Rev. A 81 032504
[22] Li L, Li Z, Wang C, Gan W T, Hua X and Tong X 2023 Nucl. Sci. Technol. 34 24
[23] Klinkenberg P F A 1988 Physica B+C 151 552
[24] Li F C, Qiao H X, Tang Y B and Shi T Y 2022 J. Quant. Spectrosc. Radiat. Transfer 288 108241
[25] Yamaguchi A, Shigekawa Y, Haba H, Kikunaga H, Shirasaki K, Wada M and Katori H 2024 Nature 629 62
[26] Dzuba V and Flambaum V 2023 Phys. Rev. Lett. 131 263002
[27] Campbell C J, Radnaev A G and Kuzmich A 2011 Phys. Rev. Lett. 106 223001
[28] Safronova M S, Safronova U I, Radnaev A G, Campbell C J and Kuzmich A 2013 Phys. Rev. A 88 060501
[29] Li F C, Qiao H X, Tang Y B and Shi T Y 2021 Phys. Rev. A 104 062808
[30] Radnaev A G, Campbell C J and Kuzmich A 2012 Phys. Rev. A 86 060501
[31] Si R, Shi C, Xue N, Kong X, Chen C, Tu B and Ma Y G 2025 Sci. China Phys. Mech. Astron. 68 272011
[32] WangW, Zou F, Fritzsche S and Li Y 2024 Phys. Rev. Lett. 133 223001
[33] Shabaev V, Glazov D, Ryzhkov A, Brandau C, Plunien G, Quint W, Volchkova A and Zinenko D 2022 Phys. Rev. Lett. 128 043001
[34] Von Der Wense L, Bilous P V, Seiferle B, Stellmer S, Weitenberg J, Thirolf P G, Pálffy A and Kazakov G 2020 Eur. Phys. J. A 56 176
[1] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[2] Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme
Xiao-Yong Lu(卢肖勇) and Ya-Peng Sun(孙亚鹏). Chin. Phys. B, 2024, 33(3): 033202.
[3] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[4] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[5] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[6] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[7] Noise analysis of grating-based x-ray differential phase-contrast imaging with angular signal radiography
Wali Faiz, Yuan Bao(鲍园), Kun Gao(高昆), Zhao Wu(吴朝), Chen-Xi Wei(卫晨希), Gui-Bin Zan(昝贵彬), Pei-Ping Zhu(朱佩平), Yang-Chao Tian(田扬超). Chin. Phys. B, 2017, 26(4): 040602.
[8] Direct loading of atoms from a macroscopic quadrupole magnetic trap into a microchip trap
Jun Cheng(程俊), Jing-fang Zhang(张敬芳), Xin-ping Xu(许忻平), Hai-chao Zhang(张海潮), Yu-zhu Wang(王育竹). Chin. Phys. B, 2017, 26(3): 033701.
[9] Theoretical derivation and simulation of a versatileelectrostatic trap for cold polar molecules
Shengqiang Li(李胜强). Chin. Phys. B, 2016, 25(11): 113702.
[10] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[11] Conditions for formation and trapping of the two-ion Coulomb cluster in the dissipative optical superlattice
I. V. Krasnov. Chin. Phys. B, 2015, 24(6): 063701.
[12] Cooling and trapping polar molecules in an electrostatic trap
Wang Zhen-Xia (王振霞), Gu Zhen-Xing (顾振兴), Deng Lian-Zhong (邓联忠), Yin Jian-Ping (印建平). Chin. Phys. B, 2015, 24(5): 053701.
[13] Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap
Li Sheng-Qiang (李胜强), Xu Liang (许亮), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(12): 123701.
[14] Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms
Ji Zhong-Hua (姬中华), Yuan Jin-Peng (元晋鹏), Zhao Yan-Ting (赵延霆), Chang Xue-Fang (常雪芳), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(11): 113702.
[15] Production of CH (A2Δ) by multi-photon dissociation of (CH3)2CO, CH3NO2, CH2Br2, and CHBr3 at 213 nm
Li Sheng-Qiang (李胜强), Xu Liang (许亮), Chen Yang-Qin (陈扬骎), Deng Lian-Zhong (邓联忠), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(8): 083701.
No Suggested Reading articles found!