|
|
|
Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2 |
| Wenqian Tu(涂文倩)1,2, Run Lv(吕润)1,2, Dingfu Shao(邵定夫)1, Yuping Sun(孙玉平)3,1,4, and Wenjian Lu(鲁文建)1,† |
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 4 Collaborative Innovation Center of Microstructures, Nanjing University, Nanjing 210093, China |
|
|
|
|
Abstract Monolayer vanadium ditelluride (VTe$_{2}$) exhibits a $2\sqrt{3}\times2\sqrt{3}$ charge-density-wave (CDW) order intertwined with a Mott-insulating state. However, the physical mechanisms driving the emergence of the CDW order and the Mott-insulating state are still not well understood. In this study, we systematically investigate the electronic band structure, phonon dispersion, and electron-phonon coupling (EPC) of monolayer VTe$_{2}$ under applied biaxial strain. Our results reveal that the $2\sqrt{3}\times2\sqrt{3}$ CDW phase is metastable in free-standing monolayer VTe$_{2}$ but becomes stabilized under compressive strain below $\varepsilon=-2\%$. The formation of the CDW order originates predominantly from strong EPC, rather than from Fermi-surface nesting. The narrowing of the bandwidth due to the CDW order, combined with correlation effects associated with the V 3d orbitals, collectively drive the system into a Mott-insulating state. Furthermore, we find that tensile strain suppresses the CDW order and induces a superconducting state above a critical strain threshold ($\varepsilon=2\%$). These findings enhance our understanding of correlation physics in monolayer VTe$_{2}$ and provide a pathway for strain-engineered manipulation of quantum phases in two-dimensional transition-metal dichalcogenides.
|
Received: 13 April 2025
Revised: 23 June 2025
Accepted manuscript online: 27 June 2025
|
|
PACS:
|
71.45.Lr
|
(Charge-density-wave systems)
|
| |
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
| |
74.20.Pq
|
(Electronic structure calculations)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403203). |
Corresponding Authors:
Wenjian Lu
E-mail: wjlu@issp.ac.cn
|
Cite this article:
Wenqian Tu(涂文倩), Run Lv(吕润), Dingfu Shao(邵定夫), Yuping Sun(孙玉平), and Wenjian Lu(鲁文建) Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2 2025 Chin. Phys. B 34 097103
|
[1] Chen C W, Choe J and Morosan E 2016 Rep. Prog. Phys. 79 084505 [2] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [3] Keimer B and Moore J E 2017 Nat. Phys. 13 1045 [4] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E 2008 Nat. Mater. 7 960 [5] Ang R, Tanaka Y, Ieki E, Nakayama K, Sato T, Li L J, Lu W J, Sun Y P and Takahashi T 2012 Phys. Rev. Lett. 109 176403 [6] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V and Cava R J 2008 Phys. Rev. B 78 104520 [7] Li L J, Deng X Y,Wang Z, Liu Y, Abeykoon M, Dooryhee E, Tomic A, Huang Y N, Warren J B, Bozin E S, Billinge S J L, Sun Y P, Zhu Y M, Kotliar G and Petrovic C 2017 npj Quantum Mater. 2 11 [8] Kusmartseva A F, Sipos B, Berger H, Forró L and Tutiš E 2009 Phys. Rev. Lett. 103 236401 [9] Martino E, Pisoni A, Ć irić L, Arakcheeva A, Berger H, Akrap A, Putzke C, Moll P J W, Batistić I, Tutiš E, Forró L and Semeniuk K 2020 npj 2D Mater. Appl. 4 7 [10] Yu Y J, Yang F Y, Lu X F, Yan Y J, Cho Y H, Ma L G, Niu X H, Kim S, Son YW, Feng D L, Li S Y, Cheong SW, Chen X H and Zhang Y B 2015 Nat. Nanotechnol. 10 270 [11] Shao D F, Xiao R C, Lu W J, Lv H Y, Li J Y, Zhu X B and Sun Y P 2016 Phys. Rev. B 94 125126 [12] Qiao S, Li X, Wang N, Ruan W, Ye C, Cai P, Hao Z, Yao H, Chen X, Wu J, Wang Y and Liu Z 2017 Phys. Rev. X 7 041054 [13] Zhu X Y, Wang S, Jia Z Y, Zhu L, Li Q Y, Zhao W M, Xue C L, Xu Y J, Ma Z, Wen J, Yu S L, Li J X and Li S C 2019 Phys. Rev. Lett. 123 206405 [14] Butler C J, Yoshida M, Hanaguri T and Iwasa Y 2020 Nat. Commun. 11 2477 [15] Stahl Q, Kusch M, Heinsch F, Garbarino G, Kretzschmar N, Hanff K, Rossnagel K, Geck J and Ritschel T 2020 Nat. Commun. 11 1247 [16] Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C, Albertini O R, Xiong H, Jia T, Liu Z, Sobota J A, Liu A Y, Moore J E, Shen Z X, Louie S G, Mo S K and Crommie M F 2020 Nat. Phys. 16 218 [17] Ruan W, Chen Y, Tang S, Hwang J, Tsai H Z, Lee R L, Wu M, Ryu H, Kahn S, Liou F, Jia C, Aikawa A, Hwang C, Wang F, Choi Y, Louie S G, Lee P A, Shen Z X, Mo S K and Crommie M F 2021 Nat. Phys. 17 1154 [18] Liu M, Wu C, Liu Z, Wang Z, Yao D X and Zhong D 2020 Nano Res. 13 1733 [19] Zhu Z L, Liu Z L, Wu X, Li X Y, Shi J A, Liu C, Qian G J, Zheng Q, Huang L, Lin X, Wang J O, Chen H, Zhou W, Sun J T, Wang Y L and Gao H J 2022 Chin. Phys. B 31 077101 [20] Zhao W M, Ding W, Wang Q W, Meng Y X, Zhu L, Jia Z Y, Zhu W and Li S C 2023 Phys. Rev. Lett. 131 086501 [21] Duvjir G, Jung J A, Ly T T, Lam N H, Chang Y J, Lee S, Kim H and Kim J 2022 APL Mater. 10 111102 [22] Wong P K J, Zhang W, Zhou J, Bussolotti F, Yin X, Zhang L, N’Diaye A T, Morton S A, Chen W, Goh J, de Jong M P, Feng Y P and Wee A T S 2019 ACS Nano 13 12894 [23] Sugawara K, Nakata Y, Fujii K, Nakayama K, Souma S, Takahashi T and Sato T 2019 Phys. Rev. B 99 241404 [24] Miao G, Xue S, Li B, Lin Z, Liu B, Zhu X, Wang W and Guo J 2020 Phys. Rev. B 101 035407 [25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [28] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978 [29] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 [30] Sheppard D, Terrell R and Henkelman G 2008 J. Chem. Phys. 128 134106 [31] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matt. 21 395502 [32] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [33] Colonna S, Ronci F, Cricenti A, Perfetti L, Berger H and Grioni M 2005 Phys. Rev. Lett. 94 036405 [34] Liu L, Yang H, Huang Y, Song X, Zhang Q, Huang Z, Hou Y, Chen Y, Xu Z, Zhang T, Wu X, Sun J, Huang Y, Zheng F, Li X, Yao Y, Gao H J and Wang Y 2021 Nat. Commun. 12 1978 [35] Liu Z Y, Qiao S, Huang B, Tang Q Y, Ling Z H, Zhang W H, Xia H N, Liao X, Shi H, MaoWH, Zhu G L, Lü J T and Fu Y S 2021 Nano Lett. 21 7005 [36] Nakata Y, Sugawara K, Chainani A, Oka H, Bao C, Zhou S, Chuang P Y, Cheng C M, Kawakami T, Saruta Y, Fukumura T, Zhou S, Takahashi T and Sato T 2021 Nat. Commun. 12 5873 [37] Si J G, Lu W J, Wu H Y, Lv H Y, Liang X, Li Q J and Sun Y P 2020 Phys. Rev. B 101 235405 [38] Hwang J, Jin Y, Zhang C, Zhu T, Kim K, Zhong Y, Lee J E, Shen Z, Chen Y, Ruan W, Ryu H, Hwang C, Lee J, Crommie M F, Mo S K and Shen Z X 2022 Adv. Mater. 34 2204579 [39] Bai Y S, Jian T, Pan Z M, Deng J H, Lin X Y, Zhu C, Huo D, Cheng Z B, Liu Y, Cui P, Zhang Z Y, Zou Q and Zhang C D 2023 Nano Lett. 23 2107 [40] Taguchi T, Sugawara K, Oka H, Kawakami T, Saruta Y, Kato T, Nakayama K, Souma S, Takahashi T, Fukumura T and Sato T 2023 Phys. Rev. B 107 L041105 [41] Liu A Y 2009 Phys. Rev. B 79 220515 [42] Calandra M and Mauri F 2011 Phys. Rev. Lett. 106 196406 [43] Battaglia C, Cercellier H, Clerc F, Despont L, Garnier M G, Koitzsch C, Aebi P, Berger H, Forró L and Ambrosch-Draxl C 2005 Phys. Rev. B 72 195114 [44] Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135 [45] Si J G, Wei M J, Wu H Y, Xiao R C and Lu W J 2019 Europhys. Lett. 127 37001 [46] Wei M J, Lu W J, Xiao R C, Lv H Y, Tong P, Song W H and Sun Y P 2017 Phys. Rev. B 96 165404 [47] Liu K, Mao S, Zhang S H and Zhou J 2022 Nano Lett. 22 9006 [48] Lin T, Wang X, Chen X, Liu X, Luo X, Li X, Jing X, Dong Q, Liu B, Liu H, Li Q, Zhu X and Liu B 2021 Inorg. Chem. 60 11385 [49] Lin D, Li S, Wen J, Berger H, Forró L, Zhou H, Jia S, Taniguchi T, Watanabe K, Xi X and Bahramy M S 2020 Nat. Commun. 11 2406 [50] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [51] Penev E S, Kutana A and Yakobson B I 2016 Nano Lett. 16 2522 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|