Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097103    DOI: 10.1088/1674-1056/ade8e0
RAPID COMMUNICATION Prev   Next  

Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2

Wenqian Tu(涂文倩)1,2, Run Lv(吕润)1,2, Dingfu Shao(邵定夫)1, Yuping Sun(孙玉平)3,1,4, and Wenjian Lu(鲁文建)1,†
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
4 Collaborative Innovation Center of Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Monolayer vanadium ditelluride (VTe$_{2}$) exhibits a $2\sqrt{3}\times2\sqrt{3}$ charge-density-wave (CDW) order intertwined with a Mott-insulating state. However, the physical mechanisms driving the emergence of the CDW order and the Mott-insulating state are still not well understood. In this study, we systematically investigate the electronic band structure, phonon dispersion, and electron-phonon coupling (EPC) of monolayer VTe$_{2}$ under applied biaxial strain. Our results reveal that the $2\sqrt{3}\times2\sqrt{3}$ CDW phase is metastable in free-standing monolayer VTe$_{2}$ but becomes stabilized under compressive strain below $\varepsilon=-2\%$. The formation of the CDW order originates predominantly from strong EPC, rather than from Fermi-surface nesting. The narrowing of the bandwidth due to the CDW order, combined with correlation effects associated with the V 3d orbitals, collectively drive the system into a Mott-insulating state. Furthermore, we find that tensile strain suppresses the CDW order and induces a superconducting state above a critical strain threshold ($\varepsilon=2\%$). These findings enhance our understanding of correlation physics in monolayer VTe$_{2}$ and provide a pathway for strain-engineered manipulation of quantum phases in two-dimensional transition-metal dichalcogenides.
Keywords:  charge density wave      Mott-insulating state      superconductivity  
Received:  13 April 2025      Revised:  23 June 2025      Accepted manuscript online:  27 June 2025
PACS:  71.45.Lr (Charge-density-wave systems)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  74.20.Pq (Electronic structure calculations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403203).
Corresponding Authors:  Wenjian Lu     E-mail:  wjlu@issp.ac.cn

Cite this article: 

Wenqian Tu(涂文倩), Run Lv(吕润), Dingfu Shao(邵定夫), Yuping Sun(孙玉平), and Wenjian Lu(鲁文建) Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2 2025 Chin. Phys. B 34 097103

[1] Chen C W, Choe J and Morosan E 2016 Rep. Prog. Phys. 79 084505
[2] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[3] Keimer B and Moore J E 2017 Nat. Phys. 13 1045
[4] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E 2008 Nat. Mater. 7 960
[5] Ang R, Tanaka Y, Ieki E, Nakayama K, Sato T, Li L J, Lu W J, Sun Y P and Takahashi T 2012 Phys. Rev. Lett. 109 176403
[6] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V and Cava R J 2008 Phys. Rev. B 78 104520
[7] Li L J, Deng X Y,Wang Z, Liu Y, Abeykoon M, Dooryhee E, Tomic A, Huang Y N, Warren J B, Bozin E S, Billinge S J L, Sun Y P, Zhu Y M, Kotliar G and Petrovic C 2017 npj Quantum Mater. 2 11
[8] Kusmartseva A F, Sipos B, Berger H, Forró L and Tutiš E 2009 Phys. Rev. Lett. 103 236401
[9] Martino E, Pisoni A, Ć irić L, Arakcheeva A, Berger H, Akrap A, Putzke C, Moll P J W, Batistić I, Tutiš E, Forró L and Semeniuk K 2020 npj 2D Mater. Appl. 4 7
[10] Yu Y J, Yang F Y, Lu X F, Yan Y J, Cho Y H, Ma L G, Niu X H, Kim S, Son YW, Feng D L, Li S Y, Cheong SW, Chen X H and Zhang Y B 2015 Nat. Nanotechnol. 10 270
[11] Shao D F, Xiao R C, Lu W J, Lv H Y, Li J Y, Zhu X B and Sun Y P 2016 Phys. Rev. B 94 125126
[12] Qiao S, Li X, Wang N, Ruan W, Ye C, Cai P, Hao Z, Yao H, Chen X, Wu J, Wang Y and Liu Z 2017 Phys. Rev. X 7 041054
[13] Zhu X Y, Wang S, Jia Z Y, Zhu L, Li Q Y, Zhao W M, Xue C L, Xu Y J, Ma Z, Wen J, Yu S L, Li J X and Li S C 2019 Phys. Rev. Lett. 123 206405
[14] Butler C J, Yoshida M, Hanaguri T and Iwasa Y 2020 Nat. Commun. 11 2477
[15] Stahl Q, Kusch M, Heinsch F, Garbarino G, Kretzschmar N, Hanff K, Rossnagel K, Geck J and Ritschel T 2020 Nat. Commun. 11 1247
[16] Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C, Albertini O R, Xiong H, Jia T, Liu Z, Sobota J A, Liu A Y, Moore J E, Shen Z X, Louie S G, Mo S K and Crommie M F 2020 Nat. Phys. 16 218
[17] Ruan W, Chen Y, Tang S, Hwang J, Tsai H Z, Lee R L, Wu M, Ryu H, Kahn S, Liou F, Jia C, Aikawa A, Hwang C, Wang F, Choi Y, Louie S G, Lee P A, Shen Z X, Mo S K and Crommie M F 2021 Nat. Phys. 17 1154
[18] Liu M, Wu C, Liu Z, Wang Z, Yao D X and Zhong D 2020 Nano Res. 13 1733
[19] Zhu Z L, Liu Z L, Wu X, Li X Y, Shi J A, Liu C, Qian G J, Zheng Q, Huang L, Lin X, Wang J O, Chen H, Zhou W, Sun J T, Wang Y L and Gao H J 2022 Chin. Phys. B 31 077101
[20] Zhao W M, Ding W, Wang Q W, Meng Y X, Zhu L, Jia Z Y, Zhu W and Li S C 2023 Phys. Rev. Lett. 131 086501
[21] Duvjir G, Jung J A, Ly T T, Lam N H, Chang Y J, Lee S, Kim H and Kim J 2022 APL Mater. 10 111102
[22] Wong P K J, Zhang W, Zhou J, Bussolotti F, Yin X, Zhang L, N’Diaye A T, Morton S A, Chen W, Goh J, de Jong M P, Feng Y P and Wee A T S 2019 ACS Nano 13 12894
[23] Sugawara K, Nakata Y, Fujii K, Nakayama K, Souma S, Takahashi T and Sato T 2019 Phys. Rev. B 99 241404
[24] Miao G, Xue S, Li B, Lin Z, Liu B, Zhu X, Wang W and Guo J 2020 Phys. Rev. B 101 035407
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[29] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[30] Sheppard D, Terrell R and Henkelman G 2008 J. Chem. Phys. 128 134106
[31] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matt. 21 395502
[32] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[33] Colonna S, Ronci F, Cricenti A, Perfetti L, Berger H and Grioni M 2005 Phys. Rev. Lett. 94 036405
[34] Liu L, Yang H, Huang Y, Song X, Zhang Q, Huang Z, Hou Y, Chen Y, Xu Z, Zhang T, Wu X, Sun J, Huang Y, Zheng F, Li X, Yao Y, Gao H J and Wang Y 2021 Nat. Commun. 12 1978
[35] Liu Z Y, Qiao S, Huang B, Tang Q Y, Ling Z H, Zhang W H, Xia H N, Liao X, Shi H, MaoWH, Zhu G L, Lü J T and Fu Y S 2021 Nano Lett. 21 7005
[36] Nakata Y, Sugawara K, Chainani A, Oka H, Bao C, Zhou S, Chuang P Y, Cheng C M, Kawakami T, Saruta Y, Fukumura T, Zhou S, Takahashi T and Sato T 2021 Nat. Commun. 12 5873
[37] Si J G, Lu W J, Wu H Y, Lv H Y, Liang X, Li Q J and Sun Y P 2020 Phys. Rev. B 101 235405
[38] Hwang J, Jin Y, Zhang C, Zhu T, Kim K, Zhong Y, Lee J E, Shen Z, Chen Y, Ruan W, Ryu H, Hwang C, Lee J, Crommie M F, Mo S K and Shen Z X 2022 Adv. Mater. 34 2204579
[39] Bai Y S, Jian T, Pan Z M, Deng J H, Lin X Y, Zhu C, Huo D, Cheng Z B, Liu Y, Cui P, Zhang Z Y, Zou Q and Zhang C D 2023 Nano Lett. 23 2107
[40] Taguchi T, Sugawara K, Oka H, Kawakami T, Saruta Y, Kato T, Nakayama K, Souma S, Takahashi T, Fukumura T and Sato T 2023 Phys. Rev. B 107 L041105
[41] Liu A Y 2009 Phys. Rev. B 79 220515
[42] Calandra M and Mauri F 2011 Phys. Rev. Lett. 106 196406
[43] Battaglia C, Cercellier H, Clerc F, Despont L, Garnier M G, Koitzsch C, Aebi P, Berger H, Forró L and Ambrosch-Draxl C 2005 Phys. Rev. B 72 195114
[44] Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135
[45] Si J G, Wei M J, Wu H Y, Xiao R C and Lu W J 2019 Europhys. Lett. 127 37001
[46] Wei M J, Lu W J, Xiao R C, Lv H Y, Tong P, Song W H and Sun Y P 2017 Phys. Rev. B 96 165404
[47] Liu K, Mao S, Zhang S H and Zhou J 2022 Nano Lett. 22 9006
[48] Lin T, Wang X, Chen X, Liu X, Luo X, Li X, Jing X, Dong Q, Liu B, Liu H, Li Q, Zhu X and Liu B 2021 Inorg. Chem. 60 11385
[49] Lin D, Li S, Wen J, Berger H, Forró L, Zhou H, Jia S, Taniguchi T, Watanabe K, Xi X and Bahramy M S 2020 Nat. Commun. 11 2406
[50] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[51] Penev E S, Kutana A and Yakobson B I 2016 Nano Lett. 16 2522
[1] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[2] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[3] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[4] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[5] Superconductivity in YbN4H12 under low pressures
Xiang Wang(汪翔), Chenlong Xie(谢晨龙), Haohao Hong(洪浩豪), Yanliang Wei(魏衍亮), Zhao Liu(刘召), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(8): 087401.
[6] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[7] Ground state of electron-doped t-t0-J model on cylinders: An investigation of finite size and boundary condition effects
Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普). Chin. Phys. B, 2025, 34(8): 087105.
[8] Observation of a long-range unidirectional charge density wave in kagome superconductor KV3Sb5
Xingwei Shi(石兴伟), Xiao Liu(刘潇), Geng Li(李更), Zhen Zhao(赵振), Haitao Yang(杨海涛), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077101.
[9] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[10] Momentum-dependent anisotropy of the charge density wave gap in quasi-1D ZrTe3-xSex (x = 0.015)
Renjie Zhang(张任杰), Yudong Hu(胡裕栋), Yiwei Cheng(程以伟), Yigui Zhong(钟益桂), Xuezhi Chen(陈学智), Junqin Li(李俊琴), Kozo Okazaki, Yaobo Huang(黄耀波), Tian Shang(商恬), Shifeng Jin(金士锋), Baiqing Lv(吕佰晴), and Hong Ding(丁洪). Chin. Phys. B, 2025, 34(7): 077106.
[11] In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe3
Qi Qi(齐琦), Senhao Lv(吕森浩), Ke Zhu(祝轲), Yaofeng Xie(谢耀锋), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Yang Yang(杨洋), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077305.
[12] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[13] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[14] Anisotropic two-band α-model and its application to layered chalcogenide superconductor NbSe2
Jiang-Ning Zhang(张江宁), Guo Wang(王果), Tian-Yi Han(韩天意), and Hai Huang(黄海). Chin. Phys. B, 2025, 34(5): 057401.
[15] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
No Suggested Reading articles found!