Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 057401    DOI: 10.1088/1674-1056/adbbbe
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropic two-band α-model and its application to layered chalcogenide superconductor NbSe2

Jiang-Ning Zhang(张江宁)1, Guo Wang(王果)2, Tian-Yi Han(韩天意)2, and Hai Huang(黄海)1,†
1 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China;
2 School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
Abstract  The generalized α-model for anisotropic two-band superconductivity is consistently constructed with the consideration of weak interband electron-electron interaction. Tailored from the two-band BCS theory, the developed framework can be applied to investigate thermodynamic properties of intraband strong-coupling superconductors. Accordingly, we perform a calculation on the temperature dependence of specific heat and obtain an analytic expression for specific heat jump at the superconducting critical temperature. Meanwhile, we also compute the superfluid density and the spin susceptibility with this formalism. Given the low-temperature superconducting gaps from experimental measurement, all of our theoretical results can fit the experimental data of the layered two-band superconductor NbSe2 well.
Keywords:  two-band superconductivity      anisotropic α-model      specific heat      NbSe2  
Received:  16 December 2024      Revised:  28 February 2025      Accepted manuscript online:  03 March 2025
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.20.Fg (BCS theory and its development)  
  74.25.Bt (Thermodynamic properties)  
Corresponding Authors:  Hai Huang     E-mail:  huanghai@ncepu.edu.cn

Cite this article: 

Jiang-Ning Zhang(张江宁), Guo Wang(王果), Tian-Yi Han(韩天意), and Hai Huang(黄海) Anisotropic two-band α-model and its application to layered chalcogenide superconductor NbSe2 2025 Chin. Phys. B 34 057401

[1] Brixner L H 1962 J. Inorg. Nucl. Chem. 24 257
[2] Revolinsky E, Spiering G A and Beerntsen D J 1965 J. Phys. Chem. Solids 26 1029
[3] Moncton D E, Axe J D and DiSalvo F J 1977 Phys. Rev. B 16 801
[4] Corcoran R, Meeson P, Onuki Y, Probst P A, Springford M, Takita K, Harima H, Guo G Y and Gyorffy B L 1994 J. Phys.: Condens. Matter 6 4479
[5] Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y and Berger H 2004 Phys. Rev. Lett. 92 086401
[6] Zhang C, Qiao S, Xiao H and Hu T 2023 Chin. Phys. B 32 047201
[7] Sanna A, Pellegrini C, Liebhaber E, Rossnagel K, Franke K J and Gross E K U 2022 npj Quantum Mater. 7 6
[8] Rossnagel K, Seifarth O, Kipp L, Skibowski M, Voß D, Krüger P, Mazur A and Pollmann J 2001 Phys. Rev. B 64 235119
[9] JohannesMD, Mazin I I and Howells C A 2006 Phys. Rev. B 73 205102
[10] Zhang H X, Rousuli A, Zhang K A, et al. 2022 Nat. Phys. 18 1425
[11] Noat Y, Silva-Guillén J A, Cren T, Cherkez V, Brun C, Pons S, Debontridder F, Roditchev D, Sacks W, Cario L, Ordejón P, García A and Canadell E 2015 Phys. Rev. B 92 134510
[12] Hayashi N, Ichioka M and Machida K 1997 Phys. Rev. B 56 9052
[13] Fletcher J D, Carrington A, Diener P, Rodière P, Brison J P, Prozorov R, Olheiser T and Giannetta R W 2007 Phys. Rev. Lett. 98 057003
[14] Rahn D J, Hellmann S, Kallane M, Sohrt C, Kim T K, Kipp L and Rossnagel K 2012 Phys. Rev. B 85 224532
[15] Eliashberg G M 1960 Sov. Phys. JETP 11 696
[16] Padamsee H, Neighbor J E and Shiffman C A 1973 J. Low Temp. Phys. 12 387
[17] Johnston D C 2013 Supercond. Sci. Technol. 26 115011
[18] Sanchez D, Junod A, Muller J, Berger H and Lévy F 1995 Physica B 204 167
[19] Huang C L, Lin J Y, Chang Y T, Sun C P, Shen H Y, Chou C C, Berger H, Lee T K and Yang H D 2007 Phys. Rev. B 76 212504
[20] Gurevich A 2003 Phys. Rev. B 67 184515
[21] Zhitomirsky M E and Dao V H 2004 Phys. Rev. B 69 054508
[22] Gurevich A 2007 Physica C 456 160
[23] Gonczarek R, Gladysiewicz M and Mulak M 2001 Int. J. Mod. Phys. B 15 491
[24] Mishonov T M and Penev E S 2002 Int. J. Mod. Phys. B 16 3573
[25] Mishonov T M, Penev E S, Indekeu J O and Pokrovsky V L 2003 Phys. Rev. B 68 104517
[26] Mishonov T M, Klenov S I and Penev E S 2005 Phys. Rev. B 71 024520
[27] See, for example, Pathria R K 1996 Statistical Mechanics 2nd Edn. (Oxford: Butterworth-Heinemann)
[28] Chandrasekhar B S and Einzel D 1993 Ann. Physik 505 535
[29] Prozorov R and Giannetta R W 2006 Supercond. Sci. Technol. 19 41
[30] Yosida K 1958 Phys. Rev. 110 769
[31] Roshen W A and Ruvalds J 1983 Phys. Rev. B 28 1329
[32] Das S, Paudyal H, Margine E R, Agterberg D F and Mazin I I 2023 npj Comput. Mater. 9 66
[33] Hossain M D, Salman Z, Wang D, Chow K H, Kreitzman S, Keeler T A, Levy C D P, MacFarlane W A, Miller R I, Morris G D, Parolin T J, Pearson M, Saadaoui H and Kiefl R F 2009 Phys. Rev. B 79 144518
[34] Devidas T R, Dvir T, Rossi E and Steinberg H 2023 Phys. Rev. B 107 094502
[1] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[2] Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2024, 33(1): 016108.
[3] Subtle lattice distortion-driven phase transitions in layered ACu4As2 (A = Eu, Sr)
Yong Nie(聂勇), Zheng Chen(陈正), Ming Mei(梅明), Yuan-Yuan Wang(王园园), Jia-Ting Wu(吴嘉挺), Jia-Liang Jiang(蒋佳良), Wen-Hai Song(宋文海), Wei Ning(宁伟), Zhao-Sheng Wang(王钊胜), Xiang-De Zhu(朱相德), and Ming-Liang Tian(田明亮). Chin. Phys. B, 2023, 32(10): 106102.
[4] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[5] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
[6] Specific heat in superconductors
Hai-Hu Wen(闻海虎). Chin. Phys. B, 2020, 29(1): 017401.
[7] First principles study and comparison of vibrational and thermodynamic properties of XBi (X= In, Ga, B, Al)
Raheleh Pilevar Shahri, Arsalan Akhtar. Chin. Phys. B, 2017, 26(9): 093107.
[8] Fluctuating specific heat in two-band superconductors
Lei Qiao(乔雷), Cheng Chi(迟诚), Jiangfan Wang(王江帆). Chin. Phys. B, 2017, 26(11): 117401.
[9] Magnetocaloric and magnetic properties of La2NiMnO6 double perovskite
Masrour R, Jabar A. Chin. Phys. B, 2016, 25(8): 087502.
[10] Temperature-dependent specific heat of suspended platinum nanofilms at 80-380 K
Qin-Yi Li(李秦宜), Masahiro Narasaki(楢崎将弘), Koji Takahashi(高桥厚史), Tatsuya Ikuta(生田竜也), Takashi Nishiyama(西山贵史), Xing Zhang(张兴). Chin. Phys. B, 2016, 25(11): 114401.
[11] Theory of specific heat of vortex liquid of high Tc superconductors
Chen Bai(白晨), Cheng Chi(迟诚), Jiangfan Wang(王江帆). Chin. Phys. B, 2016, 25(10): 107404.
[12] Effects of a finite number of particles on the thermodynamic properties of a harmonically trapped ideal charged Bose gas in a constant magnetic field
Duan-Liang Xiao(肖端亮), Meng-Yun Lai(赖梦云), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2016, 25(1): 010307.
[13] Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4
Li Wang(王理), Rong-juan Wang(王蓉娟), Yuan-yuan Zhu(朱媛媛), Zhi-hong Lu(卢志红),Rui Xiong(熊锐), Yong Liu(刘雍), Jing Shi(石兢). Chin. Phys. B, 2016, 25(1): 016802.
[14] Monte Carlo study of the magnetic properties of spin liquid compound NiGa2S4
Zhang Kai-Cheng (张开成), Li Yong-Feng (李永峰), Liu Yong (刘永), Chi Feng (迟锋). Chin. Phys. B, 2014, 23(5): 057501.
[15] Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique
T. A. El-Brolossy, O. Saber, S. S. Ibrahim. Chin. Phys. B, 2013, 22(7): 074401.
No Suggested Reading articles found!