|
Special Issue:
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
|
| SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices |
Prev
Next
|
|
|
Probing high-energy and band-edge exciton dynamics in monolayer WS2 using transient absorption spectroscopy under near-resonant and high-energy excitations |
| Hang Ren(任航)1, Shuai Zhu(朱帅)1, Mingzhao Ouyang(欧阳名钊)1, Jiake Wang(王加科)1, Yuegang Fu(付跃刚)1, Chuxin Yan(闫楚欣)2, Qingbin Wang(王庆彬)2, and Yuanzheng Li(李远征)2,† |
1 School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China; 2 State Key Laboratory of Integrated Optoelectronics, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China |
|
|
|
|
Abstract Insight into exciton dynamics of two-dimensional (2D) transition metal dichalcogenides (TMDs) is critical for the optimization of their performance in photonic and optoelectronic devices. Although current researches have primarily concentrated on the near-resonant excitation scenario in 2D TMDs, the case of excitation energies resonating with high-energy excitons or higher energies has yet to be fully elucidated. Here, a comparative analysis is conducted between high-energy excitation (360 nm) and near-resonant excitation (515 nm) utilizing transient absorption spectroscopy to achieve a comprehensive understanding of the exciton dynamics within monolayer WS$_{2}$. It is observed that the high-energy C-exciton can be generated via an up-conversion process under 515 nm excitation, even the energy of which is less than that of the C-exciton. Furthermore, the capacity to efficiently occupy band-edge A-exciton states leads to longer lifetimes for both the C-excitons and the A-excitons under conditions of near-resonant excitation, accompanied by an augmented rate of radiative recombination. This study provides a paradigm for optimizing the performance of 2D TMDs-based devices by offering valuable insights into their exciton dynamics.
|
Received: 23 June 2025
Revised: 21 July 2025
Accepted manuscript online: 31 July 2025
|
|
PACS:
|
71.35.-y
|
(Excitons and related phenomena)
|
| |
71.35.Cc
|
(Intrinsic properties of excitons; optical absorption spectra)
|
| |
78.47.-p
|
(Spectroscopy of solid state dynamics)
|
| |
78.47.jb
|
(Transient absorption)
|
| |
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12474421 and 12104066), the Fund from Education Department of Jilin Province (Grant Nos. JJKH20250473KJ and JJKH20241413KJ), and the Fund from Department of Science and Technology of Jilin Province (Grant No. YDZJ202101ZYTS041). |
Corresponding Authors:
Yuanzheng Li
E-mail: liyz264@nenu.edu.cn
|
Cite this article:
Hang Ren(任航), Shuai Zhu(朱帅), Mingzhao Ouyang(欧阳名钊), Jiake Wang(王加科), Yuegang Fu(付跃刚), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), and Yuanzheng Li(李远征) Probing high-energy and band-edge exciton dynamics in monolayer WS2 using transient absorption spectroscopy under near-resonant and high-energy excitations 2025 Chin. Phys. B 34 097104
|
[1] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207 [2] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T and Morozov S V 2013 Science 340 1311 [3] You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R and Heinz T F 2015 Nat. Phys. 11 477 [4] Qiu D Y, Jornada F H D and Louie S G 2015 Phys. Rev. Lett. 115 216805 [5] Li Y, Yan J, Chen J, Yu T, Ren H, Liu X, LiuW, Yang G, Xu C and Bao Q 2021 Nano Res. 14 4274 [6] Huo C, Yun T, Yan X, Liu Z, Zhao X, Xu W, Cui Q, Liu Z and Tian J 2023 Chin. Phys. B 32 067203 [7] Unuchek D, Ciarrocchi A, Avsar A, Sun Z, Watanabe K, Taniguchi T and Kis A 2019 Nat. Nanotechnol. 14 1104 [8] Ye T, Li Y, Li J, Shen H, Ren J, Ning C Z and Li D 2022 Light Sci. Appl. 11 23 [9] Kwak D, Polyushkin D K and Mueller T 2023 Nat. Commun. 14 4264 [10] Cai H, Rasmita A, He R, Zhang Z, Tan Q, Chen D, Wang N, Mu Z, Eng J J H, She Y, Pan N, Wang Q, Dong Z, Wang X, Wang J, Miao Y, Singh R, Qiu C W, Liu X and Gao W 2024 Nat. Photonics 18 842 [11] Ma R, Ren H, Yan C, Li Y, Li J, Xin W, Liu W, Zhao X G, Yang L, Feng S, Xu H, Liu Y and Liu X 2024 ACS Photonics 11 5339 [12] Li J, Zhou Y, Li Y, Yan C, Zhao X G, Xin W, Xie X, Liu W, Xu H and Liu Y 2024 ACS Photonics 11 4578 [13] Li Y, LiuW, Xu H, Chen H, Ren H, Shi J, DuW, ZhangW, Feng Q and Yan J 2020 Adv. Opt. Mater. 8 1901226 [14] Carvalho A, Ribeiro R M and Castro Neto A H 2013 Phys. Rev. B 88 115205 [15] Yan C, Li Y, Li R, Ma R, Li J, Xin W, Liu W, Xu H and Liu Y 2024 Laser Photonics Rev. 18 2400951 [16] Goswami T, Bhatt H, Babu K J, Kaur G, Ghorai N and Ghosh H N 2021 J. Phys. Chem. Lett. 12 6526 [17] Gao Y, Li Y, Liu W, Yan C, Wang Q, Xin W, Xu H and Liu Y 2025 Chin. Phys. B 34 097102 [18] Feng J, Li Y, Li J, Feng Q, Xin W, Liu W, Xu H and Liu Y 2022 Nano Lett. 22 3699 [19] Yan Z, Poh E T, Zhang Z, Chua S T, Wang X, Wu X, Chen Z, Yang J, Xu Q H and Goh K E J 2020 ACS Nano 14 5946 [20] Yan C, Sun B, Li Y, Li R, Wang Q, Gao Y, Xin W, Liu W, Xu H and Liu Y 2025 Nano Lett. 25 9686 [21] Kozawa D, Kumar R, Carvalho A, Amara K K, Zhao W, Wang S, Toh M, Ribeiro R M, Neto A H C and Matsuda K 2014 Nat. Commun. 5 4543 [22] Qu J, Wei Y, Zhao L, Tan R, Li W, Shi H, Zhang Y, Yang J, Gao B and Li X 2024 ACS Nano 18 34322 [23] Mai C, Barrette A, Yu Y, Semenov Y G, Kim K W, Cao L and Gundogdu K 2014 Nano Lett. 14 202 [24] Jin C, Ma E Y, Karni O, Regan E C, Wang F and Heinz T F 2018 Nat. Nanotechnol. 13 994 [25] Li Y, Shi J, Mi Y, Sui X, Xu H and Liu X 2019 J. Mater. Chem. C 7 4304 [26] Wang Y, Nie Z and Wang F 2020 Light Sci. Appl. 9 192 [27] Wang Z, Altmann P, Gadermaier C, Yang Y, Li W, Ghirardini L, Trovatello C, Finazzi M, Duò L, Celebrano M, Long R, Akinwande D, Prezhdo O V, Cerullo G and Dal Conte S 2021 Nano Lett. 21 2165 [28] Yuan L, Zheng B, Zhao Q, Kempt R, Brumme T, Kuc A B, Ma C, Deng S, Pan A and Huang L 2023 ACS Nano 17 15379 [29] Sun C, Zhou H, Sheng T, Li S and Zhu H 2024 ACS Nano 18 931 [30] Sui X, Wang H, Liang C, Zhang Q, Bo H, Wu K, Zhu Z, Gong Y, Yue S, Chen H, Shang Q, Mi Y, Gao P, Zhang Y, Meng S and Liu X 2022 Nano Lett. 22 5651 [31] Wang Z, Sun C, Xu X, Liu Y, Chen Z, Yang Y M and Zhu H 2023 J. Am. Chem. Soc. 145 11227 [32] Zhou H, Sun C, Xin W, Li Y, Chen Y and Zhu H 2022 Nano Lett. 22 2547 [33] Liu X, Zhang Q, Yip J N, Xiong Q and Sum T C 2013 Nano Lett. 13 5336 [34] Li Y,Wu X, LiuW, Xu H and Liu X 2021 Appl. Phys. Lett. 119 051106 [35] Cunningham P D, Hanbicki A T, McCreary K M and Jonker B T 2017 ACS Nano 11 12601 [36] Pogna E A, Marsili M, De F D, Dal C S, Manzoni C, Sangalli D, Yoon D, Lombardo A, Ferrari A C and Marini A 2015 ACS Nano 10 1182 [37] Wu B, Wang A, Fu J, Zhang Y, Yang C, Gong Y, Jiang C, Long M, Zhou G, Yue S, Ma W and Liu X 2023 Science Advances 9 eadi9347 [38] Li Y, Shi J, Chen H, Wang R, Mi Y, Zhang C, Du W, Zhang S, Liu Z, Zhang Q, Qiu X, Xu H, Liu W, Liu Y and Liu X 2018 Nanoscale 10 17585 [39] Wang H, Zhang C and Rana F 2014 Nano Lett. 15 339 [40] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, and Huang L 2013 ACS Nano 7 1072 [41] Li Y, Shi J, Chen H, Mi Y, Du W, Sui X, Jiang C, Liu W, Xu H and Liu X 2019 Laser Photonics Rev. 13 1800270 [42] Fuchs G, Schiedel C, Hangleiter A, Härle V and Scholz F 1993 Appl. Phys. Lett. 62 396 [43] Cunningham P D, McCreary K M and Jonker B T 2016 J. Phys. Chem. Lett. 7 5242 [44] Sun D, Rao Y, Reider G A, Chen G, You Y, Brézin L, Harutyunyan A R and Heinz T F 2014 Nano Lett. 14 5625 [45] Lee K J, Xin W and Guo C 2020 Phys. Rev. B 101 195407 [46] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [47] Li M, Bhaumik S, Goh T W, Kumar M S, Yantara N, Grätzel M, Mhaisalkar S, Mathews N and Sum T C 2017 Nat. Commun. 8 14350 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|