|
|
Quantum entangled fractional Fourier transform based on the IWOP technique |
Ke Zhang(张科)1, Lan-Lan Li(李兰兰)1, Pan-Pan Yu(余盼盼)1, Ying Zhou(周莹)1, Da-Wei Guo(郭大伟)1, and Hong-Yi Fan(范洪义)2,† |
1 School of Electronic Engineering, Huainan Normal University, Huainan 232038, China; 2 Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract In our previous papers, the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics, and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform. The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too. In this paper, the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators (IWOP) are used to establish the entanglement fractional Fourier transform theory to the extent of quantum. A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
|
Received: 06 April 2022
Revised: 14 June 2022
Accepted manuscript online: 05 July 2022
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
42.50.-p
|
(Quantum optics)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775208), the Foundation for Young Talents at the College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077), and the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant Nos. KJ2020A0638 and 2022AH051586). |
Corresponding Authors:
Hong-Yi Fan
E-mail: fhym@ustc.edu.cn
|
Cite this article:
Ke Zhang(张科), Lan-Lan Li(李兰兰), Pan-Pan Yu(余盼盼), Ying Zhou(周莹),Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义) Quantum entangled fractional Fourier transform based on the IWOP technique 2023 Chin. Phys. B 32 040302
|
[1] Zhang K, Li L L, Yu H J, Du J M and Fan H Y 2020 Acta. Photon. Sin. 49 1027001 [2] Hu L Y, Rao Z M and Kuang Q Q 2019 Chin. Phys. B 28 084206 [3] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303 [4] Fan H Y and Wang J S 2007 Commun. Theor. Phys. 47 431 [5] Fan H Y, Lu H L, Gao W B and Xu X F 2006 Ann. Phys. 321 2116 [6] Zhang K, Li L L and Fan H Y 2020 Chin. Phys. B 29 100302 [7] Agarwal G S 1981 Phys. Rev. A 24 2889 [8] Lu D M 2020 Acta. Photon. Sin. 49 427001 [9] Du J M and Fan H Y 2013 Chin. Phys. B 22 060302 [10] Domokos P, Adam P and Janszky J 1994 Phys. Rev. A 50 4293 [11] Lv C H, Fan H Y and Li D W 2014 Chin. Phys. B 24 020301 [12] Mendlovic D, Ozaktas H M and Lohmann A W 1994 Appl. Opt. 33 6188 [13] Fan H Y and Fan Y 2005 Phys. Lett. A 344 351 [14] Fan H Y 2003 Opt. Lett. 28 2177 [15] Song J, Xu Y J and Fan H Y 2011 Acta. Phys. Sin. 60 084208 (in Chinese) [16] Fan H Y and Lu J F 2004 Commun. Theor. Phys. 41 681 [17] Wiener N 1929 J. Math. Phys. 8 70 [18] Namias V 1980 IMA J. Appl. Math. 25 241 [19] Mcbride A C and Kerr F H 1987 IMA J. Appl. Math. 39 159 [20] Mendlovic D and Ozaktas H M 1993 J. Opt. Soc. Am. A 10 1875 [21] Ozaktas H M and Mendlovic D 1993 J. Opt. Soc. Am. A 10 2522 [22] Almeida L B 1994 IEEE Trans. Signal. Process. 42 3084 [23] Zdayed A I 1996 IEEE Signal Process. Lett. 3 310 [24] Cariolaro G and Erseghe T 1998 IEEE. Trans. Signal. Process. 46 3206 [25] Jia F, Xu S, Deng C Z, Liu C J and Hu L Y 2016 Front. Phys. 11 110302 [26] Fan H Y and Fan Y 2002 Eur. Phys. J. D 21 233 [27] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429 [28] Xu X F and Fan H Y 2020 Int. J. Theor. Phys. 59 292 [29] Hadjiivanov L and Todorov I 2015 New J. Phys. 4 73 [30] Fan H Y, Zhang P F and Wang Z 2015 Chin. Phys. B 24 204 [31] Mcwhirter J G, Redif S, Baxter P D, Cooper T, Redif S and Foster J 2007 IEEE Trans. Signal. Process. 55 2158 [32] Area I, Dimitrov D K and Godoy E 2015 J. Math. Anal. Appl. 421 830 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|