Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040302    DOI: 10.1088/1674-1056/ac7e32
GENERAL Prev   Next  

Quantum entangled fractional Fourier transform based on the IWOP technique

Ke Zhang(张科)1, Lan-Lan Li(李兰兰)1, Pan-Pan Yu(余盼盼)1, Ying Zhou(周莹)1, Da-Wei Guo(郭大伟)1, and Hong-Yi Fan(范洪义)2,†
1 School of Electronic Engineering, Huainan Normal University, Huainan 232038, China;
2 Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  In our previous papers, the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics, and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform. The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too. In this paper, the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators (IWOP) are used to establish the entanglement fractional Fourier transform theory to the extent of quantum. A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
Keywords:  fractional Fourier transform      coordinate-momentum exchange operators      bivariate operator Hermite polynomial theory      the technique of integration within an ordered product of operators      quantum entangled fractional Fourier transform  
Received:  06 April 2022      Revised:  14 June 2022      Accepted manuscript online:  05 July 2022
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775208), the Foundation for Young Talents at the College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077), and the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant Nos. KJ2020A0638 and 2022AH051586).
Corresponding Authors:  Hong-Yi Fan     E-mail:  fhym@ustc.edu.cn

Cite this article: 

Ke Zhang(张科), Lan-Lan Li(李兰兰), Pan-Pan Yu(余盼盼), Ying Zhou(周莹),Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义) Quantum entangled fractional Fourier transform based on the IWOP technique 2023 Chin. Phys. B 32 040302

[1] Zhang K, Li L L, Yu H J, Du J M and Fan H Y 2020 Acta. Photon. Sin. 49 1027001
[2] Hu L Y, Rao Z M and Kuang Q Q 2019 Chin. Phys. B 28 084206
[3] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303
[4] Fan H Y and Wang J S 2007 Commun. Theor. Phys. 47 431
[5] Fan H Y, Lu H L, Gao W B and Xu X F 2006 Ann. Phys. 321 2116
[6] Zhang K, Li L L and Fan H Y 2020 Chin. Phys. B 29 100302
[7] Agarwal G S 1981 Phys. Rev. A 24 2889
[8] Lu D M 2020 Acta. Photon. Sin. 49 427001
[9] Du J M and Fan H Y 2013 Chin. Phys. B 22 060302
[10] Domokos P, Adam P and Janszky J 1994 Phys. Rev. A 50 4293
[11] Lv C H, Fan H Y and Li D W 2014 Chin. Phys. B 24 020301
[12] Mendlovic D, Ozaktas H M and Lohmann A W 1994 Appl. Opt. 33 6188
[13] Fan H Y and Fan Y 2005 Phys. Lett. A 344 351
[14] Fan H Y 2003 Opt. Lett. 28 2177
[15] Song J, Xu Y J and Fan H Y 2011 Acta. Phys. Sin. 60 084208 (in Chinese)
[16] Fan H Y and Lu J F 2004 Commun. Theor. Phys. 41 681
[17] Wiener N 1929 J. Math. Phys. 8 70
[18] Namias V 1980 IMA J. Appl. Math. 25 241
[19] Mcbride A C and Kerr F H 1987 IMA J. Appl. Math. 39 159
[20] Mendlovic D and Ozaktas H M 1993 J. Opt. Soc. Am. A 10 1875
[21] Ozaktas H M and Mendlovic D 1993 J. Opt. Soc. Am. A 10 2522
[22] Almeida L B 1994 IEEE Trans. Signal. Process. 42 3084
[23] Zdayed A I 1996 IEEE Signal Process. Lett. 3 310
[24] Cariolaro G and Erseghe T 1998 IEEE. Trans. Signal. Process. 46 3206
[25] Jia F, Xu S, Deng C Z, Liu C J and Hu L Y 2016 Front. Phys. 11 110302
[26] Fan H Y and Fan Y 2002 Eur. Phys. J. D 21 233
[27] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[28] Xu X F and Fan H Y 2020 Int. J. Theor. Phys. 59 292
[29] Hadjiivanov L and Todorov I 2015 New J. Phys. 4 73
[30] Fan H Y, Zhang P F and Wang Z 2015 Chin. Phys. B 24 204
[31] Mcwhirter J G, Redif S, Baxter P D, Cooper T, Redif S and Foster J 2007 IEEE Trans. Signal. Process. 55 2158
[32] Area I, Dimitrov D K and Godoy E 2015 J. Math. Anal. Appl. 421 830
[1] From fractional Fourier transformation to quantum mechanical fractional squeezing transformation
Lv Cui-Hong (吕翠红), Fan Hong-Yi (范洪义), Li Dong-Wei (李东韡). Chin. Phys. B, 2015, 24(2): 020301.
[2] Relations between chirp transform and Fresnel diffraction, Wigner distribution function and a fast algorithm for chirp transform
Shi Peng(石鹏) , Cao Guo-Wei(曹国威), and Li Yong-Ping(李永平). Chin. Phys. B, 2010, 19(7): 074201.
[3] Two mutually conjugated tripartite entangled states and their fractional Fourier transformation kernel
LÜ Cui-Hong(吕翠红), Fan Hong-Yi(范洪义), and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(12): 120303.
[4] Novel uncertainty relations associated with fractional Fourier transform
Xu Guan-Lei(徐冠雷), Wang Xiao-Tong(王孝通), and Xu Xiao-Gang(徐晓刚) . Chin. Phys. B, 2010, 19(1): 014203.
[5] Fractional Fourier transform of Lorentz beams
Zhou Guo-Quan(周国泉). Chin. Phys. B, 2009, 18(7): 2779-2784.
[6] Fractional Fourier transform of Cantor sets: further numerical study
Gao Qiong(高穹), Liao Tian-He(廖天河), and Cui Yuan-Feng(崔远峰). Chin. Phys. B, 2008, 17(6): 2018-2022.
[7] Wavelet--fractional Fourier transforms
Yuan Lin(袁琳). Chin. Phys. B, 2008, 17(1): 170-179.
[8] Image recovery from double amplitudes in fractional Fourier domain
Liao Tian-He (廖天河), Gao Qiong (高穹). Chin. Phys. B, 2006, 15(2): 347-352.
[9] Fractional Fourier transform for partially coherent beam in spatial-frequency domain
Cai Yang-Jian (蔡阳健), Lin Qiang (林强). Chin. Phys. B, 2004, 13(7): 1025-1032.
[10] High order generalized permutational fractional Fourier transforms
Ran Qi-Wen (冉启文), Yuan Lin (袁琳), Tan Li-Ying (谭立英), Ma Jing (马晶), Wang Qi (王骐). Chin. Phys. B, 2004, 13(2): 178-186.
No Suggested Reading articles found!