Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 096301    DOI: 10.1088/1674-1056/ade59f
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
TOPICAL REVIEW — Heat conduction and its related interdisciplinary areas Prev   Next  

Phase change thermal interface materials: From principles to applications and beyond

Chenggong Zhao(赵成功)1,2, Yifan Li(李一凡)2,3,†, Chen Jiang(蒋晨)2, Yuanzheng Tang(唐元政)1, Yan He(何燕)1, Wei Yu(于伟)1,2, and Bingyang Cao(曹炳阳)1,3,‡
1 School of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;
2 School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China;
3 Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract  Phase change thermal interface materials (PC-TIMs) have emerged as a promising solution to address the increasing thermal management challenges in electronic devices. This is attributed to their dual mechanisms of latent heat absorption and phase change-induced interfacial wettability. This review explores the fundamental principles, material innovations, and diverse applications of PC-TIMs. The heat transfer enhancement mechanisms are first underlined with key factors such as thermal carrier mismatch at the microscale and contact geometry at the macroscale, emphasizing the importance of material selection and design for optimizing thermal performance. Section 2 focuses on corresponding experimental approaches provided, including intrinsic thermal conductivity improvements and interfacial heat transfer optimization. Section 3 discusses common methods such as physical adsorption via porous materials, chain-crosslinked network designs, and core-shell structures, and their effects on leakage prevention, heat transfer enhancement, and application flexibility. Furthermore, the extended applications of PC-TIMs in thermal energy storage are explored in Section 4, suggesting their potential in diverse technological fields. The current challenges in interfacial heat transfer research and the prospect of PC-TIMs are also discussed. The data-driven machine learning technologies will play an increasingly important role in addressing material development and performance prediction.
Keywords:  phase change thermal interface materials      contact thermal resistance      interfacial heat transfer      encapsulation  
Received:  07 April 2025      Revised:  28 May 2025      Accepted manuscript online:  18 June 2025
PACS:  63.20.K- (Phonon interactions)  
  44.10.+i (Heat conduction)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
Fund: The authors acknowledge funding from the National Natural Science Foundation of China (Grant Nos. 52306214, 52425601, and 52276074), the Shanghai Chenguang Plan Program (Grant No. 22CGA78), and the National Key Research and the Development Program of China (Grant No. 2023YFB4404104).
Corresponding Authors:  Yifan Li, Bingyang Cao     E-mail:  liyf@sspu.edu.cn;caoby@tsinghua.edu.cn

Cite this article: 

Chenggong Zhao(赵成功), Yifan Li(李一凡), Chen Jiang(蒋晨), Yuanzheng Tang(唐元政), Yan He(何燕), Wei Yu(于伟), and Bingyang Cao(曹炳阳) Phase change thermal interface materials: From principles to applications and beyond 2025 Chin. Phys. B 34 096301

[1] Li J, Zhou Y, Jiang C, Lei D and Yu X 2024 J. Mater. Chem. C 12 12179
[2] Wang S, Zhao X, Luo J, Zhuang L and Zou D 2022 Compos. Part A Appl. Sci. Manuf. 163 107216
[3] Zheng W, Shao C, Wang Q, Li G and Li H 2023 Surf. Interfaces 43 103538
[4] Dai W, Wang Y, Li M, Chen L, Yan Q, Yu J, Jiang N and Lin C T 2024 Adv. Mater. 36 e2311335
[5] Hu B, Guo H, Li T, Li J, Cao M, QiW, Li X and Li B 2024 Chem. Eng. J. 483 149240
[6] Xing W, Xu Y, Song C and Deng T 2022 Nanomaterials (Basel) 12 3365
[7] Zhao C, Li Y, Liu Y, Xie H and Yu W 2023 Adv. Compos. Hybrid Mater. 6 27
[8] Wei B, Luo W, Du J, Ding Y, Guo Y, Zhu G, Zhu Y and Li B 2024 SusMat 4 e239
[9] Zhao X, Zou D and Wang S 2022 Chem. Eng. J. 431 134231
[10] Liu C, Xu H, Yang J, Xie H and Yu W 2022 Int. J. Therm. Sci. 179 107679
[11] Zhao X, Peng L M, Chen Y, Zha X J, Li W D, Bai L, Ke K, Bao R Y, Yang M B and Yang W 2021 Mater. Horiz. 8 1230
[12] Khan J, Momin S A and Mariatti M 2020 Carbon 168 65
[13] Lewis J S, Perrier T, Barani Z, Kargar F and Balandin A A 2021 Nanotechnology 32 142003
[14] Ma H, Gao B, Wang M, Yuan Z, Shen J, Zhao J and Feng Y 2020 J. Mater. Sci. 56 1064
[15] Feng C P, Yang L Y, Yang J, Bai L, Bao R Y, Liu Z Y, Yang M B, Lan H B and Yang W 2020 Compos. Commun. 22 100528
[16] Chen S, Deng Z and Liu J 2021 Nanotechnology 32 092001
[17] Razeeb K M, Dalton E, Cross G LWand Robinson A J 2017 Int. Mater. Rev. 63 1
[18] Liu L, Su D, Tang Y and Fang G 2016 Renewable Sustainable Energy Rev. 62 305
[19] Wu S, Yan T, Kuai Z and Pan W 2020 Energy Storage Mater. 25 251
[20] Safari A, Saidur R, Sulaiman F A, Xu Y and Dong J 2017 Renewable Sustainable Energy Rev. 70 905
[21] Lin Y, Alva G and Fang G 2018 Energy 165 685
[22] UmairMM, Zhang Y, Iqbal K, Zhang S and Tang B 2019 Appl. Energy 235 846
[23] Shamberger P J and Bruno N M 2020 Appl. Energy 258 113955
[24] Zhang P, Yuan P, Jiang X, Zhai S, Zeng J, Xian Y, Qin H and Yang D 2017 Small 14 1702769
[25] Hansson J, Nilsson T M J, Ye L and Liu J 2017 Int. Mater. Rev. 63 22
[26] Kapitza P L 1941 Phys. Rev. 60 354
[27] Chen J, Xu X, Zhou J and Li B 2022 Rev. Mod. Phys. 94 025002
[28] Zhou T, Zhao Y and Rao Z 2022 Int. J. Heat Mass Transfer 189 122701
[29] Lu J, Yuan K, Sun F, Zheng K, Zhang Z, Zhu J, Wang X, Zhang X, Zhuang Y, Ma Y, Cao X, Zhang J and Tang D 2019 ACS Appl. Mater. Interfaces 11 42708
[30] Mu L, He J, Li Y, Ji T, Mehra N, Shi Y and Zhu J 2017 J. Phys. Chem. C 121 14204
[31] Mu L, Li Y, Mehra N, Ji T and Zhu J 2017 ACS Appl. Mater. Interfaces 9 12138
[32] Zhang R, Liu M Y, Liu W, Li Z M and He Z Z 2023 Case Stud. Therm. Eng. 43 102801
[33] Aalilija A, Gandin C A and Hachem E 2021 Int. J. Therm. Sci. 166 106817
[34] Wu Y J, Yagi T and Xu Y 2021 Int. J. Heat Mass Transfer 180 121766
[35] Zhao Y, Zeng X, Ren L, Xia X, Zeng X and Zhou J 2021 Mater. Chem. Front. 5 5617
[36] Li M, Shakoori M A, Wang R and Li H 2024 Chin. Phys. Lett. 41 016302
[37] Wu M, Shi R, Qi R, Li Y, Feng T, Liu B, Yan J, Li X, Liu Z, Wang T, Wei T, Liu Z, Du J, Chen J and Gao P 2023 Chin. Phys. Lett. 40 036801
[38] Yu J, Hanafusa H and Higashi S 2024 Appl. Phys. Express 17 036502
[39] WangW, Yang C, Xiong S andWang X 2023 Int. J. Heat Mass Transfer 213 124326
[40] Xu B, Hu S, Hung S W, Shao C, Chandra H, Chen F R, Kodama T and Shiomi J 2021 Sci. Adv. 7 eabf8197
[41] Fan H, Wang M, Han D, Zhang J, Zhang J and Wang X 2020 J. Phys. Chem. C 124 16748
[42] Young D A and Maris H J 1989 Phys. Rev. B 40 3685
[43] Nazarychev V M, Glova A D, Volgin I V, Larin S V, Lyulin A V, Lyulin S V and Gurtovenko A A 2021 Int. J. Heat Mass Transfer 165 120639
[44] Barrat J L and Chiaruttini F 2003 Mol. Phys. 101 1605
[45] Wang J S, Wang J and Zeng N 2006 Phys. Rev. B 74 033408
[46] Hu B, Bao W, Chen G, Wang Z and Tang D 2023 Comput. Mater. Sci. 230 112485
[47] He J, Tao L, Xian W, Arbaugh T and Li Y 2022 Nanoscale 14 17681
[48] Song L, Zhang Y, Yang W, Tan J and Cheng L 2021 Polymers (Basel) 13 3732
[49] Li R, Hussain K, Liao M E, Huynh K, Hoque M S B, Wyant S, Koh Y R, Xu Z, Wang Y, Luccioni D P, Cheng Z, Shi J, Lee E, Graham S, Henry A, Hopkins P E, Goorsky M S, Khan M A and Luo T 2024 ACS Appl. Mater. Interfaces 16 8109
[50] Liu C, YuW, Chen C, Xie H and Cao B 2020 Int. J. Heat Mass Transfer 163 120393
[51] Liu C, Yu W, Fan J, Li Y, Chen J, Fu J, Peng G and Liu J 2024 Appl. Therm. Eng. 241 122396
[52] Ren X J, Tang Q F, Zhang H, Zhang J R, Du M and Tao W Q 2023 Case Stud. Therm. Eng. 49 103226
[53] Wang C, Lin Q, Pan Z, Hong J, Shao H and Mai Y 2023 Int. Commun. Heat Mass Transfer 149 107131
[54] Feng B, Zhang Y H, Tu J, Fan L W and Yu Z T 2021 Int. J. Heat Mass Transfer 176 121407
[55] Zhao J W, Zhao R, Huo Y K and Cheng W L 2019 Int. J. Heat Mass Transfer 140 705
[56] Greenwood J A andWilliamson J B P 1966 Proc. Math. Phys. Eng. Sci. 295 300
[57] Persson B N J 2006 Surf. Sci. Rep. 61 201
[58] Prasher R S 2001 J. Heat Transfer 123 969
[59] Han X, Huang Y, Wang J, Zhang S, Ding Z and Li T 2021 Compos. Commun. 24 100665
[60] Jia Y, Li K, Xue L, Huang L, Ren J and Zhang S 2017 J. Eur. Ceram. Soc. 37 3255
[61] Xu M, Shi C, Li P, Guo X,Wang B and Zou D 2024 Adv. Funct. Mater. 34 2409884
[62] Hu M, Wang D, Kokogiannakis G, Darkwa J, Li Y, Wang L, Xu Q and Su W 2024 Chem. Eng. J. 479 147855
[63] Wang S, Zhao X, Wang Z, Zhang Y, Wang H and Zou D 2023 J. Cleaner Prod. 417 138058
[64] Li X, Sheng M, Gong S, Wu H, Chen X, Lu X and Qu J 2022 Chem. Eng. J. 430 132928
[65] Wang H, Chen S, Zhu X, Yuan B, Sun X, Zhang J, Yang X, Wei Y and Liu J 2022 Matter 5 2054
[66] Xu X, Zhou J and Chen J 2019 Adv. Funct. Mater. 30 1904704
[67] Zhao H Y, Yu M Y, Liu J, Li X, Min P and Yu Z Z 2022 Nano-Micro Lett. 14 129
[68] Tauseef ur R, Ali H M, Janjua M M, Sajjad U and Yan W M 2019 Int. J. Heat Mass Transfer 135 649
[69] Zhan H, Nie Y, Chen Y, Bell J M and Gu Y 2019 Adv. Funct. Mater. 30 1903841
[70] Shin S,Wang Q, Luo J and Chen R 2019 Adv. Funct. Mater. 30 1904815
[71] Wang Z, Wu Z, Weng L, Ge S, Jiang D, Huang M, Mulvihill D M, Chen Q, Guo Z, Jazzar A, He X, Zhang X and Xu B B 2023 Adv. Funct. Mater. 33 2301549
[72] Meng D, Zhao K, Zhao W and Jiang G 2017 J. Wuhan Univ. Technol. 32 1048
[73] Nabil M and Khodadadi J M 2013 Int. J. Heat Mass Transfer 67 301
[74] Venkitaraj K P and Suresh S 2017 Exp. Therm. Fluid Sci. 88 73
[75] Zhang Y, Jiang Y and Jiang Y 1999 Meas. Sci. Technol. 10 201
[76] Yang X-H and Liu J 2018 Int. J. Heat Mass Transfer 127 457
[77] Zhang Y, Zhang X, Xu X and Lu M 2020 J. Energy Storage 27 101062
[78] Zhou T, Liu X, Li Y, Sun Z and Zhou J 2017 Int. J. Heat Mass Transfer 111 631
[79] Ma A, Cai C, Peng S and Zhou T 2023 Int. J. Therm. Sci. 184 107987
[80] Mao L K, Liu Q, Chen H and ChengWL 2024 Int. J. Heat Mass Transfer 227 125512
[81] Zhou T, Yuan J and Li M 2020 Int. Commun. Heat Mass Transfer 119 104959
[82] Nan C W, Birringer R, Clarke D R and Gleiter H 1997 J. Appl. Phys. 81 6692
[83] Zhu G, Zou M, Luo W, Huang Y, Chen W, Hu X, Jiang X and Li Q 2024 Chem. Eng. J. 488 150930
[84] Su M, Han G, Gao J, Feng Y, He C, Ma J, Liu C and Shen C 2022 Chem. Eng. J. 427 131665
[85] Afaynou I, Faraji H, Choukairy K, Arshad A and ArıcıM 2023 Int. Commun. Heat Mass Transfer 143 106690
[86] Yang X, Li C, Ma Y, Chi H, Hu Z and Xie J 2023 Chem. Eng. J. 473 145364
[87] Jiang Z, Ouyang T, Ding L, Li W, Li W and Balogun M S 2022 Chem. Eng. J. 438 135496
[88] Krings E J, Zhang H, Sarin S, Shield J E, Ryu S and Markvicka E J 2021 Small 17 e2104762
[89] Xie Z, Dou Z, Wu D, Zeng X, Feng Y, Tian Y, Fu Q and Wu K 2023 Adv. Funct. Mater. 33 2214071
[90] Jia L C, Wang Z X, Wang L, Zeng J F, Du P Y, Yue Y F, Zhao L H and Jia S L 2023 Mater. Horiz. 10 5656
[91] Chen K, Ding J, Wang W and Lu J 2023 Chem. Eng. J. 454 140087
[92] Liu Y, Zheng R and Li J 2022 Renewable Sustainable Energy Rev. 168 112783
[93] Huang Z J, Liu Y L, Zhu T Y, Jiang W J, Sun D X, Yang J H, Qi X D and Wang Y 2024 J. Energy Storage 98 113043
[94] Zhang Z, Liu Y, Yang K, Chen D, Li S and Li Z 2022 Mater. Chem. Phys. 290 126564
[95] Guo P, Sheng N, Zhu R, Zhu C and Rao Z 2023 ACS Sustainable Chem. Eng. 11 3324
[96] Ki S, Shin S, Cho S, Bang S, Choi D and Nam Y 2024 Adv. Sci. 11 2310185
[97] Jesus D’Oliveira E, Azimov U, Costa Pereira S C and Lafdi K 2024 J. Energy Storage 92 112090
[98] Cui W, Si T, Li X, Li X, Lu L, Ma T and Wang Q 2022 Renewable Sustainable Energy Rev. 169 112912
[99] Dong Q, Sun B, Dong Z, Tian Y, Zhu H, Yuan G, Cong Y, Li B, Guo J and Li X 2022 Energy Rep. 8 7071
[100] Luo W, Zou M, Luo L, Chen W, Hu X, Ma Y, Li Q and Jiang X 2022 ACS Appl. Mater. Interfaces 14 55098
[101] Yang Q, Yao H, Yang Y and Azaiez M 2024 Energy 300 131532
[102] Huang X, Sun C, Chen Z and Han Y 2021 Int. J. Therm. Sci. 170 107151
[103] Cai W, Yang W, Jiang Z, He F, Zhang K, He R, Wu J and Fan J 2019 Sol. Energy Mater. Sol. Cells 194 111
[104] Zhang X, Su G, Lin J, Liu A, Wang C and Zhuang Y 2021 Int. J. Heat Mass Transfer 170 121021
[105] Hamidi E, Ganesan P B, Sharma R K and Yong K W 2023 Renewable Sustainable Energy Rev. 176 113196
[106] Qi S and Yuan W 2023 Chem. Eng. J. 473 145329
[107] Yang L Y, Feng C P, Bai L, Bao R Y, Liu Z Y, Yang M B and Yang W 2021 Chem. Eng. J. 425 131466
[108] Xu S, Cai S and Liu Z 2018 ACS Appl. Mater. Interfaces 10 36352
[109] He Q, Qin M, Zhang H, Yue J, Peng L, Liu G, Feng Y and Feng W 2024 Mater. Horiz. 11 531
[110] Hu X, Huang X, Quan B, Zhu C, Yang Y, Sheng M, Ding C, Wen H, Li X, Wei J, Wu H, Lu X and Qu J 2023 Chem. Eng. J. 471 144720
[111] Zhao Y, Zhang Z, Cai C, Zhou Z, Ling Z and Fang X 2023 Appl. Therm. Eng. 230 120807
[112] Zhou Y, Li S, Zhao Y, Ling Z, Zhang Z and Fang X 2022 Compos. Sci. Technol. 218 109192
[113] Wei S, Wang W, Zhou L and Guo J 2022 Compos. Part A Appl. Sci. Manuf. 162 107149
[114] Jiang W J, Wang R Q, Zhu T Y, Feng M, Sun D X, Yang J H, Qi X D and Wang Y 2024 Chem. Eng. J. 479 147622
[115] Wei F, Feng C P, Yang J, Yang L Y, Bai L, Bao R Y, Liu Z Y, Yang M B and Yang W 2021 ACS Appl. Mater. Interfaces 13 59364
[116] Kang L, Niu H, Ren L, Lv R, Guo H and Bai S 2023 Chem. Eng. J. 463 142402
[117] Zhao C, Wang Y, Gao L, Xu Y, Fan Z, Liu X, Ni Y, Xuan S, Deng H and Gong X 2022 ACS Appl. Mater. Interfaces 14 21564
[118] Hu Y, Zhuo H, Zhang Y, Lai H, Yi J, Chen Z, Peng X, Wang X, Liu C, Sun R and Zhong L 2021 Adv. Funct. Mater. 31 2106761
[119] Yang J, YuW, Liu C, Xie H and Xu H 2022 Compos. Sci. Technol. 219 109223
[120] Kuzina M A, Kartsev D D, Stratonovich A V and Levkin P A 2023 Adv. Funct. Mater. 33 2301421
[121] Zou L, Luo Y, Zhang J, Sheng X, Chen Y and Lin P 2023 J. Energy Storage 60 106590
[122] Yan K, He B, Wu S, Zeng Y, Wang P, Liu S, Ye Q, Zhou F and Liu W 2024 ACS Appl. Mater. Interfaces 16 30453
[123] Liu C, Yang J, Li Y, Fu J, Yu W and Xie H 2024 Surf. Interfaces 47 104204
[124] Cheng P, Tang Z, Chen X, Xu J, Liu P, Zhang X and Wang G 2023 Nano Energy 105 108009
[125] Cao H, Li Y, Xu W, Yang J, Liu Z, Bai L, Yang W and Yang M 2022 ACS Appl. Mater. Interfaces 14 52411
[126] Do J Y, Son N, Shin J, Chava R K, Joo S W and Kang M 2021 Mater. Des. 198 109357
[127] Guan J, Fan W, Li H, Mai Z, Jing Y, Chen J, Zhang M, Tang B, Yang Y and Shen X 2024 Colloids Surf., A 690 133809
[128] Niu Z, Qi S, Shuaib S S A and Yuan W 2022 Compos. Part B Eng. 228 109431
[129] Lin Y, Kang Q, Liu Y, Zhu Y, Jiang P, Mai Y W and Huang X 2023 Nanomicro Lett. 15 31
[130] Lu Q, Wang X, Zhao H W, Wang X R, Zhao J Q, Kong H R, Wang T, Liang C, Li J H and Xu W Q 2022 J. Mater. Chem. A 10 23617
[131] Wang M and Lin Y 2024 Nanoscale 16 6915
[132] Lu Y, Yu D, Dong H, Chen S, Zhou H, Wang L, Deng Z, He Z and Liu J 2022 Adv. Funct. Mater. 33 2210961
[133] Cai Y, Hong B H, Wu W X, Wang W W and Zhao F Y 2022 Energy 254 124356
[134] Krishna V N, Manikandan S and Selvam C 2022 Appl. Therm. Eng. 212 118612
[135] Ren S, Zhang M, Ye S, Wu K, Sun Z, Du Y and Fang J 2024 Chem. Eng. J. 499 155914
[136] Malakooti M H, Kazem N, Yan J, Pan C, Markvicka E J, Matyjaszewski K and Majidi C 2019 Adv. Funct. Mater. 29 1906098
[137] Huo W, Xia Z, Gao Y, Guo R and Huang X 2023 ACS Appl. Mater. Interfaces 15 29330
[138] Sun L, Wang Y, Chen L, Ying J, Li Q, Fu L, Yan Q, Wu K, Xue C, Yu J, Jiang N, Nishimura K, Lin C T and Dai W 2024 Mater. Horiz. 11 5031
[139] Crosby P H N and Netravali A N 2022 Adv. Sustainable Syst. 6 2200208
[140] Wang R Q, He Y J, Xiao Y Y, Sun D X, Yang J H, Qi X D and Wang Y 2023 Eur. Polym. J. 187 111890
[141] Yusuf A, Sánchez del Río J, Ao X, Olaizola I A and Wang D Y 2022 Nano Energy 103 107790
[142] Guo H, Jiao W, Jin H, Yuan Z and He X 2022 Adv. Funct. Mater. 33 2209345
[143] Luo T, Kong L, Li L, Lu J, Yu Z, Lin B, Fu L and Xu C 2024 Chem. Eng. J. 486 150443
[144] Peng Y and Cui Y 2024 Natl. Sci. Rev. 11 nwae295
[145] Lin X, Ling Z, Fang X and Zhang Z 2022 Appl. Energy 327 120141
[146] Wang G, Yang Y and Wang S 2022 J. Mol. Liq. 348 118048
[147] Xu Z,Wei DW, Bao R Y,Wang Y, Ke K, Yang M B and Yang W 2022 ACS Appl. Mater. Interfaces 14 22521
[148] Bhatasana M and Marconnet A 2021 Appl. Therm. Eng. 199 117384
[149] Baeuerle S, Gebhardt M, Barth J, Mikut R and Steimer A 2024 IEEE Access 12 17782
[150] Suh Y, Chandramowlishwaran A and Won Y 2024 npj Computational Materials 10 65
[1] Gas encapsulation technology for large volume press
Minghao Du(杜明浩) and Duanwei He(贺端威). Chin. Phys. B, 2024, 33(11): 110701.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] A simple encapsulation method for organic optoelectronic devices
Sun Qian-Qian (孙倩倩), An Qiao-Shi (安桥石), Zhang Fu-Jun (张福俊). Chin. Phys. B, 2014, 23(8): 083302.
[4] Dynamic mechanism for encapsulating two HIV replication inhibitor peptides with carbon nanotubes
Chen Bao-Dong (陈保栋), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光 ). Chin. Phys. B, 2012, 21(8): 083103.
No Suggested Reading articles found!