|
Special Issue:
Featured Column — INSTRUMENTATION AND MEASUREMENT
|
| INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
Spin-based magnetic detection of optically trapped single cell in microfluidic channel |
| Jun Yin(殷俊)1,2,3, Sanyou Chen(陈三友)1,2,3, Yihao Yan(燕一皓)1,4, Mengqi Wang(王孟祺)1,2, Ya Wang(王亚)1,2,4, Yiheng Lin(林毅恒)1,2,4, Qi Zhang(张琪)3,5,†, and Fazhan Shi(石发展)1,2,3,4,‡ |
1 School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; 2 Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China; 3 School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China; 4 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China; 5 Institute of Quantum Sensing, School of Physics, Institute of Fundamental and Transdisciplinary Research, Zhejiang Key Laboratory of R&D and Application of Cuttingedge Scientifc Instruments, State Key Laboratory of Ocean Sensing, Zhejiang University, Hangzhou 310027, China |
|
|
|
|
Abstract Combining optical tweezers with fluorescence microscopy is a powerful tool for single-cell analysis, playing a pivotal role in disease diagnosis, cell sorting, and the investigation of cellular dynamics. However, fluorescence detection faces challenges such as blinking, photobleaching and autofluorescence in biotissues. To address these limitations, we developed a magnetic detection strategy by integrating quantum magnetometry using nitrogen-vacancy centers into optical tweezers, demonstrating precise trapping and manipulation of individual cells in microfluidic environment. We detected a magnetic signal of 89 μT from a single cell labeled with magnetic nanoparticles, compared to a noise floor of 3.9 μT observed in unlabeled cells. This platform provides a promising approach for high-precision single-cell analysis and holds significant potential for probing cellular activities within biological microenvironments.
|
Received: 08 April 2025
Revised: 29 May 2025
Accepted manuscript online: 29 May 2025
|
|
PACS:
|
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
| |
76.30.Mi
|
(Color centers and other defects)
|
| |
87.80.-y
|
(Biophysical techniques (research methods))
|
| |
87.80.Cc
|
(Optical trapping)
|
|
| Fund: Project supported by the the National Key R&D Program of China (Grant Nos. 2019YFA0709300 and 2021YFB3202800), the National Natural Science Foundation of China (Grant Nos. T2125011 and 12174377), the Chinese Academy of Sciences (Grant No. YSBR-068), Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0302200 and 2021ZD0303204), New Cornerstone Science Foundation through the XPLORER PRIZE, Science and Technology Department of Zhejiang Province (Grant No. 2025C01041), and the Fundamental Research Funds for the Central Universities (Grant No. 226-2024-00142). |
Corresponding Authors:
Qi Zhang, Fazhan Shi
E-mail: zhq2011@ustc.edu.cn;fzshi@ustc.edu.cn
|
Cite this article:
Jun Yin(殷俊), Sanyou Chen(陈三友), Yihao Yan(燕一皓), Mengqi Wang(王孟祺), Ya Wang(王亚), Yiheng Lin(林毅恒), Qi Zhang(张琪), and Fazhan Shi(石发展) Spin-based magnetic detection of optically trapped single cell in microfluidic channel 2025 Chin. Phys. B 34 070704
|
[1] Landenberger B, Höfemann H, Wadle S and Rohrbach A 2012 Lab. Chip 12 3177 [2] Mazutis L, Gilbert J, Ung W L, Weitz D A, Griffiths A D and Heyman J A 2013 Nat. Protoc. 8 870 [3] Yang M, Shi Y, Song Q, Wei Z, Dun X, Wang Z, Wang Z, Qiu C W, Zhang H and Cheng X 2025 Light Sci. Appl. 14 103 [4] Zheng B, Li C Y, Huang S, Zhang Z L, Wu Q S, Pang D W and Tang H W 2022 Sens. Actuators B Chem. 368 132173 [5] Dus-Szachniewicz K, Gdesz-Birula K, Nowosielska E, Ziółkowski P and Drobczyński S 2022 Cells 11 2113 [6] Peng P W, Yang J C, Colley M M S and Yang T S 2021 Photonics 8 533 [7] Murzin D, Mapps D J, Levada K, Belyaev V, Omelyanchik A, Panina L and Rodionova V 2020 Sensors 20 1569 [8] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644 [9] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810 [10] Chen S, Li W, Zheng X, Yu P, Wang P, Sun Z, Xu Y, Jiao D, Ye X, Cai M, Shen M, Wang M, Zhang Q, Kong F, Wang Y, He J, Wei H, Shi F and Du J 2022 Proc. Natl. Acad. Sci. USA 119 e2118876119 [11] Chen S, Sun Z, Li W, Yu P, Shi Q, Kong F, Zhang Q, Wang P, Wang Y, Shi F and Du J 2023 Nano Lett. 23 2636 [12] Le Sage D, Arai K, Glenn D R, DeVience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeili A and Walsworth R L 2013 Nature 496 486 [13] Kayci M, Fan J, Bakirman O and Herrmann A 2021 Proc. Natl. Acad. Sci. USA 118 e2112664118 [14] Glenn D R, Lee K, Park H, Weissleder R, Yacoby A, Lukin M D, Lee H, Walsworth R L and Connolly C B 2015 Nat. Methods 12 736 [15] Andrich P, Alemán B J, Lee J C, Ohno K, de las Casas C F, Heremans F J, Hu E L and Awschalom D D 2014 Nano Lett. 14 4959 [16] Geiselmann M, Juan M L, Renger J, Say J M, Brown L J, de Abajo F J G, Koppens F and Quidant R 2013 Nat. Nanotechnol. 8 175 [17] Geiselmann M, Marty R, Renger J, García de Abajo F J and Quidant R 2014 Nano Lett. 14 1520 [18] Horowitz V R, Alemán B J, Christle D J, Cleland A N and Awschalom D D 2012 Proc. Natl. Acad. Sci. USA 109 13493 [19] Iyer S, Yao C, Lazorik O, Bin Kashem M S, Wang P, Glenn G, Mohs M, Shi Y, Mansour M, Henriksen E, Murch K, Mukherji S and Zu C 2024 Phys. Rev. Appl. 22 064076 [20] Juan Mathieu L, Bradac C, Besga B, Johnsson M, Brennen G, Molina- Terriza G and Volz T 2017 Nat. Phys. 13 241 [21] Russell L W, Dossetor E C, Wood A A, Simpson D A and Reece P J 2021 ACS Photonics 8 1214 [22] Russell L W, Ralph S G, Wittick K, Tetienne J P, Simpson D A and Reece P J 2018 ACS Photonics 5 4491 [23] Stewart A, Zhu Y, Liu Y, Simpson D A and Reece P J 2024 Nano Lett. 24 12188 [24] Hoang T M, Ahn J, Bang J and Li T 2016 Nat. Commun. 7 12250 [25] Hoang T M, Ma Y, Ahn J, Bang J, Robicheaux F, Yin Z Q and Li T 2016 Phys. Rev. Lett. 117 123604 [26] Neukirch L P, von Haartman E, Rosenholm J M and Nick Vamivakas A 2015 Nat. Photonics 9 653 [27] Aslam N, Waldherr G, Neumann P, Jelezko F and Wrachtrup J 2013 New J. Phys. 15 013064 [28] Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M and Walsworth R L 2020 Rev. Mod. Phys. 92 015004 [29] Ji P and Dutt M V G 2016 Phys. Rev. B 94 024101 [30] Meirzada I, Hovav Y, Wolf S A and Bar-Gill N 2018 Phys. Rev. B 98 245411 [31] Zhang Q, Yin J, Yan Y, Chen S, Wei B Y, Zhao S, Li M, Lei M, Lin Y, Shi F and Du J 2022 Nano Lett. 22 1851 [32] Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F and Jacques V 2011 Phys. Rev. B 84 195204 [33] Castelain M, Pignon F, Piau J M and Magnin A 2008 J. Chem. Phys. 128 135101 [34] Zhong M C, Wei X B, Zhou J H, Wang Z Q and Li Y M 2013 Nat. Commun. 4 1768 [35] Hawes C, Osterrieder A, Sparkes I A and Ketelaar T 2010 Curr. Opin. Plant Biol. 13 731 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|