Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070704    DOI: 10.1088/1674-1056/adde38
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Spin-based magnetic detection of optically trapped single cell in microfluidic channel

Jun Yin(殷俊)1,2,3, Sanyou Chen(陈三友)1,2,3, Yihao Yan(燕一皓)1,4, Mengqi Wang(王孟祺)1,2, Ya Wang(王亚)1,2,4, Yiheng Lin(林毅恒)1,2,4, Qi Zhang(张琪)3,5,†, and Fazhan Shi(石发展)1,2,3,4,‡
1 School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
2 Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China;
3 School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China;
4 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China;
5 Institute of Quantum Sensing, School of Physics, Institute of Fundamental and Transdisciplinary Research, Zhejiang Key Laboratory of R&D and Application of Cuttingedge Scientifc Instruments, State Key Laboratory of Ocean Sensing, Zhejiang University, Hangzhou 310027, China
Abstract  Combining optical tweezers with fluorescence microscopy is a powerful tool for single-cell analysis, playing a pivotal role in disease diagnosis, cell sorting, and the investigation of cellular dynamics. However, fluorescence detection faces challenges such as blinking, photobleaching and autofluorescence in biotissues. To address these limitations, we developed a magnetic detection strategy by integrating quantum magnetometry using nitrogen-vacancy centers into optical tweezers, demonstrating precise trapping and manipulation of individual cells in microfluidic environment. We detected a magnetic signal of 89 μT from a single cell labeled with magnetic nanoparticles, compared to a noise floor of 3.9 μT observed in unlabeled cells. This platform provides a promising approach for high-precision single-cell analysis and holds significant potential for probing cellular activities within biological microenvironments.
Keywords:  nitrogen-vacancy center      magnetic sensing      optical tweezers      single-cell analysis  
Received:  08 April 2025      Revised:  29 May 2025      Accepted manuscript online:  29 May 2025
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  76.30.Mi (Color centers and other defects)  
  87.80.-y (Biophysical techniques (research methods))  
  87.80.Cc (Optical trapping)  
Fund: Project supported by the the National Key R&D Program of China (Grant Nos. 2019YFA0709300 and 2021YFB3202800), the National Natural Science Foundation of China (Grant Nos. T2125011 and 12174377), the Chinese Academy of Sciences (Grant No. YSBR-068), Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0302200 and 2021ZD0303204), New Cornerstone Science Foundation through the XPLORER PRIZE, Science and Technology Department of Zhejiang Province (Grant No. 2025C01041), and the Fundamental Research Funds for the Central Universities (Grant No. 226-2024-00142).
Corresponding Authors:  Qi Zhang, Fazhan Shi     E-mail:  zhq2011@ustc.edu.cn;fzshi@ustc.edu.cn

Cite this article: 

Jun Yin(殷俊), Sanyou Chen(陈三友), Yihao Yan(燕一皓), Mengqi Wang(王孟祺), Ya Wang(王亚), Yiheng Lin(林毅恒), Qi Zhang(张琪), and Fazhan Shi(石发展) Spin-based magnetic detection of optically trapped single cell in microfluidic channel 2025 Chin. Phys. B 34 070704

[1] Landenberger B, Höfemann H, Wadle S and Rohrbach A 2012 Lab. Chip 12 3177
[2] Mazutis L, Gilbert J, Ung W L, Weitz D A, Griffiths A D and Heyman J A 2013 Nat. Protoc. 8 870
[3] Yang M, Shi Y, Song Q, Wei Z, Dun X, Wang Z, Wang Z, Qiu C W, Zhang H and Cheng X 2025 Light Sci. Appl. 14 103
[4] Zheng B, Li C Y, Huang S, Zhang Z L, Wu Q S, Pang D W and Tang H W 2022 Sens. Actuators B Chem. 368 132173
[5] Dus-Szachniewicz K, Gdesz-Birula K, Nowosielska E, Ziółkowski P and Drobczyński S 2022 Cells 11 2113
[6] Peng P W, Yang J C, Colley M M S and Yang T S 2021 Photonics 8 533
[7] Murzin D, Mapps D J, Levada K, Belyaev V, Omelyanchik A, Panina L and Rodionova V 2020 Sensors 20 1569
[8] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[9] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810
[10] Chen S, Li W, Zheng X, Yu P, Wang P, Sun Z, Xu Y, Jiao D, Ye X, Cai M, Shen M, Wang M, Zhang Q, Kong F, Wang Y, He J, Wei H, Shi F and Du J 2022 Proc. Natl. Acad. Sci. USA 119 e2118876119
[11] Chen S, Sun Z, Li W, Yu P, Shi Q, Kong F, Zhang Q, Wang P, Wang Y, Shi F and Du J 2023 Nano Lett. 23 2636
[12] Le Sage D, Arai K, Glenn D R, DeVience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeili A and Walsworth R L 2013 Nature 496 486
[13] Kayci M, Fan J, Bakirman O and Herrmann A 2021 Proc. Natl. Acad. Sci. USA 118 e2112664118
[14] Glenn D R, Lee K, Park H, Weissleder R, Yacoby A, Lukin M D, Lee H, Walsworth R L and Connolly C B 2015 Nat. Methods 12 736
[15] Andrich P, Alemán B J, Lee J C, Ohno K, de las Casas C F, Heremans F J, Hu E L and Awschalom D D 2014 Nano Lett. 14 4959
[16] Geiselmann M, Juan M L, Renger J, Say J M, Brown L J, de Abajo F J G, Koppens F and Quidant R 2013 Nat. Nanotechnol. 8 175
[17] Geiselmann M, Marty R, Renger J, García de Abajo F J and Quidant R 2014 Nano Lett. 14 1520
[18] Horowitz V R, Alemán B J, Christle D J, Cleland A N and Awschalom D D 2012 Proc. Natl. Acad. Sci. USA 109 13493
[19] Iyer S, Yao C, Lazorik O, Bin Kashem M S, Wang P, Glenn G, Mohs M, Shi Y, Mansour M, Henriksen E, Murch K, Mukherji S and Zu C 2024 Phys. Rev. Appl. 22 064076
[20] Juan Mathieu L, Bradac C, Besga B, Johnsson M, Brennen G, Molina- Terriza G and Volz T 2017 Nat. Phys. 13 241
[21] Russell L W, Dossetor E C, Wood A A, Simpson D A and Reece P J 2021 ACS Photonics 8 1214
[22] Russell L W, Ralph S G, Wittick K, Tetienne J P, Simpson D A and Reece P J 2018 ACS Photonics 5 4491
[23] Stewart A, Zhu Y, Liu Y, Simpson D A and Reece P J 2024 Nano Lett. 24 12188
[24] Hoang T M, Ahn J, Bang J and Li T 2016 Nat. Commun. 7 12250
[25] Hoang T M, Ma Y, Ahn J, Bang J, Robicheaux F, Yin Z Q and Li T 2016 Phys. Rev. Lett. 117 123604
[26] Neukirch L P, von Haartman E, Rosenholm J M and Nick Vamivakas A 2015 Nat. Photonics 9 653
[27] Aslam N, Waldherr G, Neumann P, Jelezko F and Wrachtrup J 2013 New J. Phys. 15 013064
[28] Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M and Walsworth R L 2020 Rev. Mod. Phys. 92 015004
[29] Ji P and Dutt M V G 2016 Phys. Rev. B 94 024101
[30] Meirzada I, Hovav Y, Wolf S A and Bar-Gill N 2018 Phys. Rev. B 98 245411
[31] Zhang Q, Yin J, Yan Y, Chen S, Wei B Y, Zhao S, Li M, Lei M, Lin Y, Shi F and Du J 2022 Nano Lett. 22 1851
[32] Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F and Jacques V 2011 Phys. Rev. B 84 195204
[33] Castelain M, Pignon F, Piau J M and Magnin A 2008 J. Chem. Phys. 128 135101
[34] Zhong M C, Wei X B, Zhou J H, Wang Z Q and Li Y M 2013 Nat. Commun. 4 1768
[35] Hawes C, Osterrieder A, Sparkes I A and Ketelaar T 2010 Curr. Opin. Plant Biol. 13 731
[1] Determination of liquid viscosity based on dual-frequency-band particle tracking
Lihua Yan(闫丽华), Boyin Xue(薛博引), Yuanji Li(李渊骥), Jinxia Feng(冯晋霞), Xingkang Wu(武兴康), and Kuanshou Zhang(张宽收). Chin. Phys. B, 2024, 33(9): 090701.
[2] Design of compact integrated diamond nitrogen-vacancy center quantum probe
Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(5): 054202.
[3] Micron-resolved quantum precision measurement of magnetic field at the Tesla level
Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(12): 120305.
[4] Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
Yangpeng Wang(王杨鹏), Rujian Zhang(章如健), Yan Yang(杨燕), Qin Wu(吴琴), Zhifei Yu(于志飞), and Bing Chen(陈冰). Chin. Phys. B, 2023, 32(7): 070301.
[5] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东), Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[6] Influence of viscous force on the dynamic process of micro-sphere in optical tweezers
Jing Liu(刘静), Xingyu Wu(吴星宇), Yimin Feng(冯怡敏), Mian Zheng(郑冕), and Zhiyuan Li(李志远). Chin. Phys. B, 2023, 32(10): 108704.
[7] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[8] Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†. Chin. Phys. B, 2020, 29(10): 107801.
[9] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[10] Creating nitrogen–vacancy ensembles in diamond for coupling with flux qubit
Ya-Rui Zheng(郑亚锐), Jian Xing(邢健), Yan-Chun Chang(常彦春), Zhi-Guang Yan(闫智广), Hui Deng(邓辉), Yu-Lin Wu(吴玉林), Li Lü(吕力), Xin-Yu Pan(潘新宇), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2017, 26(2): 020305.
[11] Time-bin-encoding-based remote states generation of nitrogen-vacancy centers through noisy channels
Su Shi-Lei (苏石磊), Chen Li (陈丽), Guo Qi (郭奇), Wang Hong-Fu (王洪福), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2015, 24(2): 020305.
[12] In situ calibrating optical tweezers with sinusoidal-wave drag force method
Li Di (李迪), Zhou Jin-Hua (周金华), Hu Xin-Yao (呼新尧), Zhong Min-Cheng (钟敏成), Gong Lei (龚雷), Wang Zi-Qiang (王自强), Wang Hao-Wei (王浩威), Li Yin-Mei (李银妹). Chin. Phys. B, 2015, 24(11): 118703.
[13] Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems
Cao Cong (曹聪), Liu Gang (刘刚), Zhang Ru (张茹), Wang Chuan (王川). Chin. Phys. B, 2014, 23(4): 040304.
[14] Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond
Zhang Duo (张多), Li Jia-Hua (李家华), Yang Xiao-Xue (杨晓雪). Chin. Phys. B, 2014, 23(4): 044204.
[15] Improvement of the axial trapping effect using azimuthally polarised trapping beam
Li Xue-Cong(李雪璁) and Sun Xiu-Dong(孙秀冬). Chin. Phys. B, 2010, 19(11): 119401.
No Suggested Reading articles found!