Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 119401    DOI: 10.1088/1674-1056/19/11/119401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Improvement of the axial trapping effect using azimuthally polarised trapping beam

Li Xue-Cong(李雪璁) and Sun Xiu-Dong(孙秀冬)
Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  A dual optical tweezers system, which consists of a doughnut mode optical tweezer (DMOT) with the azimuthally polarised trapping beam and a solid mode optical tweezer (SMOT) with the Gauss trapping beam was constructed to compare the axial trapping effect of DMOT and SMOT. The long-distance axial trapping of ST68 microbubbles (MBs) achieved by DMOT was more stable than that of SMOT. Moreover the axial trapping force measured using the viscous drag method, was depended on the diameter of the particle, the laser power, and the numerical aperture (NA) of the objective lens. The measurement of the axial trapping force and the acquisition of CCD images of trapping effect confirmed that the DMOT showed excellent axial trapping ability than SMOT. A simple and effective method is developed to improve axial trapping effect using the azimuthally polarized beam as trapping beam. This is helpful for the long-distance manipulating of particles especially polarised biological objects in axial direction.
Keywords:  optical tweezers      azimuthally polarised beam      axial trapping force      ST68 microbubbles  
Received:  27 April 2010      Revised:  08 June 2010      Accepted manuscript online: 
PACS:  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674037), the National Basic Research Program of China (Grant No. 2007CB307001), and the program of excellent Team in Harbin Institute of Technology of China.

Cite this article: 

Li Xue-Cong(李雪璁) and Sun Xiu-Dong(孙秀冬) Improvement of the axial trapping effect using azimuthally polarised trapping beam 2010 Chin. Phys. B 19 119401

[1] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[2] Kou S C and Sheetz M P 1993 Science 260 232
[3] Xu S H, Li Y M, Lou L R and Sun Z W 2005 Chin. Phys. 14 382
[4] Li Q, Feng W L, Hu X M, Cao Q, Sha D G and Lin J M 2008 Chin. Phys. B 17 726
[5] Domachuk P, Magi E, Eggleton B J and Cronin-Golomb M 2006 Appl. Phys. Lett. 89 071106
[6] Kress H, Stelzer E H K, Griffiths G and Rohrbach A 2005 Phys. Rev. E 71 061927
[7] Nieminen T A, Heckenberg N R and Rubinsztein-Dunlop H 2008 Opt. Lett. 33 122
[8] Stalder M and Schadt M 1996 Opt. Lett. 21 1948
[9] Gao X M, Li J S, Wang J and Zhuang S L 2009 Optik doi:10.1016/j.ijleo.2009.04.013
[10] Zhan Q W 2003 J. Opt. A: Pure Appl. Opt. 5 229
[11] Youngworth K S and Brown T G 2000 Opt. Express 7 77
[12] Quabis S, Dorn R, Eberler M, Glockl O and Leuchs G 2001 Appl. Phys. B 72 109
[13] Zhan Q W and Leger J G 2002 Opt. Express 10 324
[14] Yan S H and Yao B L 2007 Phys. Rev. A 76 053836
[15] Peng F, Yao B L, Yan S H, Zhao W and Lei M 2009 J. Opt. Soc. Am. B 26 2242
[16] Basude R, Duckworth J W and Wheatley M A 2000 Ultrasound in Med. Biol. 26 621
[17] Felgner H, Muller O and Schliwa M 1995 Appl. Opt. 34 977
[18] Ashkin A 1992 Biophys J. 61 569 endfootnotesize
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[3] In situ calibrating optical tweezers with sinusoidal-wave drag force method
Li Di (李迪), Zhou Jin-Hua (周金华), Hu Xin-Yao (呼新尧), Zhong Min-Cheng (钟敏成), Gong Lei (龚雷), Wang Zi-Qiang (王自强), Wang Hao-Wei (王浩威), Li Yin-Mei (李银妹). Chin. Phys. B, 2015, 24(11): 118703.
[4] Theoretical study of the trapping efficiency of an optical tweezers array system
Li Qin(李勤), Feng Wan-Li(冯万力), Hu Xiao-Ming(胡晓明), Cao Qun(曹群), Sha Ding-Guo(沙定国), and Lin Jia-Ming(林家明) . Chin. Phys. B, 2008, 17(2): 726-735.
[5] Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams
Xu Sheng-Hua (徐升华), Li Yin-Mei (李银妹), Lou Li-Ren (楼立人). Chin. Phys. B, 2006, 15(6): 1391-1397.
[6] Oscillatory disturbance in force calibration of optical tweezers
Liu Chun-Xiang (刘春香), Guo Hong-Lian (郭红莲), Jiang Yu-Qiang (降雨强), Li Zhao-Lin (李兆霖), Cheng Bing-Ying (程丙英), Zhang Dao-Zhong (张道中). Chin. Phys. B, 2005, 14(4): 729-733.
[7] Computer simulation of the collision frequency of two particles in optical tweezers
Xu Sheng-Hua (徐升华), Li Yin-Mei (李银妹), Lou Li-Ren (楼立人), Sun Zhi-Wei (孙祉伟). Chin. Phys. B, 2005, 14(2): 382-385.
[8] EFFECT OF SPHERICAL ABERRATION INTRODUCED BY WATER SOLUTION ON TRAPPING FORCE
Yao Xin-cheng (姚新程), Li Zhao-lin (李兆霖), Guo Hong-lian (郭红莲), Cheng Bing-ying (程丙英), Han Xue-hai (韩学海), Zhang Dao-zhong (张道中). Chin. Phys. B, 2000, 9(11): 824-826.
[9] CONSTRUCTION OF AN OPTICAL TWEEZERS—CALCULATION AND EXPERIMENTS
Sun Wei (孙巍), Wang Yi-qiu (王义遒), Gao Chong-ming (高崇明). Chin. Phys. B, 2000, 9(11): 855-860.
No Suggested Reading articles found!