Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 054202    DOI: 10.1088/1674-1056/ad2bf6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of compact integrated diamond nitrogen-vacancy center quantum probe

Sheng-Kai Xia(夏圣开)1, Wen-Tao Lu(卢文韬)2, Xu-Tong Zhao(赵旭彤)3, Ya-Wen Xue(薛雅文)4, Zeng-Bo Xu(许增博)5, Shi-Yu Ge(葛仕宇)3, Yang Wang(汪洋)4, Lin-Yan Yu(虞林嫣)3, Yu-Chen Bian(卞雨辰)2, Si-Han An(安思瀚)3, Bo Yang(杨博)6, Jian-Jun Xiang(向建军)7, and Guan-Xiang Du(杜关祥)3,†
1 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
4 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
5 School of Economics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
6 Jiangsu Institute of Quality and Standardization, Nanjing 210012, China;
7 Chengdu Analog Circuit Technology Inc., Chengdu 201203, China
Abstract  An integrated quantum probe for magnetic field imaging is proposed, where the nitrogen-vacancy (NV) center fixed at the fiber tip is located on the periphery of flexible ring resonator. Using flexible polyimide (PI) as the substrate medium, we design a circular microstrip antenna, which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz, specifically suitable for NV center experiments. Subsequently, this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support, allowing the optical fiber tip to extend out of a dedicated aperture. To mitigate errors originating from processing, precise tuning within a narrow range can be achieved by adjusting the conformal amplitude. Finally, we image the microwave magnetic field around the integrated probe with high resolution, and determine the suitable area for placing the fiber tip (SAP).
Keywords:  nitrogen-vacancy center      conformal antenna      integrated probe      magnetic field imaging  
Received:  27 December 2023      Revised:  06 February 2024      Accepted manuscript online:  22 February 2024
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2012600) and the Science and Technology Plan Project of State Administration of Market Regulation, China (Grant No. 2021MK039).
Corresponding Authors:  Guan-Xiang Du     E-mail:  duguanxiang@njupt.edu.cn

Cite this article: 

Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥) Design of compact integrated diamond nitrogen-vacancy center quantum probe 2024 Chin. Phys. B 33 054202

[1] Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Chang S, Kim C, Wojcik A, Hemmer P R and Krueger A 2008 Nature 455 648
[2] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810
[3] He W H, Dong M M, Hu Z Z, Zhang Q H, Yang B, Liu Y, Fan X L and Du G X 2019 Chin. Phys. Lett. 36 127601
[4] Gurudev Dutt M V, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
[5] Lifshitz E, Kaplan A, Ehrenfreund E and Meissner D 1999 Chem. Phys. Lett. 300 626
[6] Wrachtrup J and Jelezko F 2006 J. Phys.: Condens. Matter 18 S807
[7] Gao Y, Zeng Y, Cui M M, Qiao Y Y, Yang X, Lin C N, Zhao J L, Li L, Wang Y and Shan C X 2022 IEEE Transactions on Instrumentation and Measurement 71 1
[8] Rabeau J R, Huntington S T, Greentree A D and Prawer S 2005 Appl. Phys. Lett. 86 134104
[9] Bai R X, Yang F, Liu P, Gao T R, Zhou L, Yin X H, Zhu X Y, Ma W H, He F Y, Chen N C, Sun Y, Ma J T, Yu T and Du G X 2022 Appl. Phys. Lett. 120 044003
[10] Fedotov I V, Doronina-Amitonova L V, Voronin A A, Levchenko A O, Zibrov S A, Sidorov-Biryukov D A, Fedotov A B, Velichansky V L and Zheltikov A M 2014 Sci. Rep. 4 5362
[11] Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105
[12] Duan D, Du G X, Kavatamane V K, Arumugam S, Tzeng Y K, Chang H C and Balasubramanian G 2019 Opt. Express 27 6734
[13] Sasaki K, Monnai Y, Saijo S, Fujita R, Watanabe H, Junko I H, Itoh K M and Abe E 2016 Rev. Sci. Instrum. 87 053904
[14] Matin M A and Sayeed A I 2010 WSEAS Transactions on Communications 9 63
[15] Bayat K, Choy J, Farrokh Baroughi M, Meesala S and Loncar M 2014 Nano Lett. 14 1208
[16] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C L 2013 Phys. Rep. 528 1
[17] Yang B, Dong Y, Hu Z Z, Liu G Q, Wang Y J and Du G X 2018 IEEE Transactions on Microwave Theory and Techniques 66 2276
[18] Steiner M, Neumann P, Beck J, Jelezko F and Wrachtrup J 2010 Phys. Rev. 81 035205
[19] Sunuk C, Jungbae Y, Myeongwon L, Jooeon O, Dongkwon L, Heeseong K, Chul-Ho L and Donghun L 2018 Current Appl. Phys. 18 1066
[20] Yang H, Chen G B, Zhao X T, He F Y and Du G X 2023 IEEE Sensors Journal 23 28633
[21] Hu C M, Nitta J, Akazaki T, Takayanagi H, Osaka J, Pfeffer P and Zawadzki W 1999 Phys. Rev. 60 7736
[22] Chen G B, Gu B X, He W H, Guo Z G and Du G X 2020 IEEE Journal of Quantum Electronics 5 1
[23] Bai R X, Zhu X Y, Yang F, Gao T R, Wang Z R, Yu L Y, Wang J F, Zhou L and Du G X 2022 Chin. Phys. B 31 074203
[24] Zhang H W, Liu Y, Wang J and Sun F L 2015 Microelectronics Reliability 55 2391
[25] Lim C H, Abdullah M Z, Azid I A and Abdul Aziz M S 2017 Microelectronics Reliability 72 5
[1] High-resolution imaging of magnetic fields of banknote anti-counterfeiting strip using fiber diamond probe
Xu-Tong Zhao(赵旭彤), Fei-Yue He(何飞越), Ya-Wen Xue(薛雅文), Wen-Hao Ma(马文豪), Xiao-Han Yin(殷筱晗), Sheng-Kai Xia(夏圣开), Ming-Jing Zeng(曾明菁), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(4): 048502.
[2] Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
Yangpeng Wang(王杨鹏), Rujian Zhang(章如健), Yan Yang(杨燕), Qin Wu(吴琴), Zhifei Yu(于志飞), and Bing Chen(陈冰). Chin. Phys. B, 2023, 32(7): 070301.
[3] Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†. Chin. Phys. B, 2020, 29(10): 107801.
[4] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[5] Creating nitrogen–vacancy ensembles in diamond for coupling with flux qubit
Ya-Rui Zheng(郑亚锐), Jian Xing(邢健), Yan-Chun Chang(常彦春), Zhi-Guang Yan(闫智广), Hui Deng(邓辉), Yu-Lin Wu(吴玉林), Li Lü(吕力), Xin-Yu Pan(潘新宇), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2017, 26(2): 020305.
[6] Time-bin-encoding-based remote states generation of nitrogen-vacancy centers through noisy channels
Su Shi-Lei (苏石磊), Chen Li (陈丽), Guo Qi (郭奇), Wang Hong-Fu (王洪福), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2015, 24(2): 020305.
[7] Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems
Cao Cong (曹聪), Liu Gang (刘刚), Zhang Ru (张茹), Wang Chuan (王川). Chin. Phys. B, 2014, 23(4): 040304.
[8] Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond
Zhang Duo (张多), Li Jia-Hua (李家华), Yang Xiao-Xue (杨晓雪). Chin. Phys. B, 2014, 23(4): 044204.
No Suggested Reading articles found!