|
|
Creating nitrogen–vacancy ensembles in diamond for coupling with flux qubit |
Ya-Rui Zheng(郑亚锐), Jian Xing(邢健), Yan-Chun Chang(常彦春), Zhi-Guang Yan(闫智广), Hui Deng(邓辉), Yu-Lin Wu(吴玉林), Li Lü(吕力), Xin-Yu Pan(潘新宇), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁) |
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Hybrid quantum system of negatively charged nitrogen-vacancy (NV-) centers in diamond and superconducting qubits provide the possibility to extend the performances of both systems. In this work, we numerically simulate the coupling strength between NV- ensembles and superconducting flux qubits and obtain a lower bound of 1016 cm-3 for NV- concentration to achieve a sufficiently strong coupling of 10 MHz when the gap between NV-ensemble and flux qubit is 0. Moreover, we create NV- ensembles in different types of diamonds by 14N+ and 12C+ ion implantation, electron irradiation, and high temperature annealing. We obtain an NV- concentration of 1.05×1016 cm-3 in the diamond with 1-ppm nitrogen impurity, which is expected to have a long coherence time for the low nitrogen impurity concentration. This shows a step toward performance improvement of flux qubit-NV- hybrid system.
|
Received: 04 November 2016
Revised: 24 November 2016
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
81.05.ug
|
(Diamond)
|
|
85.25.Cp
|
(Josephson devices)
|
|
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 91321208, 11574386, 11374344, and 11574380), the National Basic Research Program of China (Grant Nos. 2014CB921401 and 2016YFA0300601), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300). |
Corresponding Authors:
Xin-Yu Pan, Dong-Ning Zheng
E-mail: xbzhu16@ustc.edu.cn;dzheng@iphy.ac.cn
|
Cite this article:
Ya-Rui Zheng(郑亚锐), Jian Xing(邢健), Yan-Chun Chang(常彦春), Zhi-Guang Yan(闫智广), Hui Deng(邓辉), Yu-Lin Wu(吴玉林), Li Lü(吕力), Xin-Yu Pan(潘新宇), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁) Creating nitrogen–vacancy ensembles in diamond for coupling with flux qubit 2017 Chin. Phys. B 26 020305
|
[1] |
Kelly J, Barends R and Fowler A G, et al. 2015 Nature 519 66
|
[2] |
Mooij J E, Orlando T P, Levitov L, Tian L, van der Wal C H and Lloyd S 1999 Science 285 1036
|
[3] |
Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
|
[4] |
Martinis J, Nam S, Aumentado J and Urbina C 2002 Phys. Rev. Lett. 89 117901
|
[5] |
Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
|
[6] |
Bar-Gill N, Pham L M, Jarmola A, Budker D and Walsworth R L 2013 Nat. Commun. 4 1743
|
[7] |
O'Brien C, Lauk N, Blum S, Morigi G and Fleischhauer M 2014 Phys. Rev. Lett. 113 063603
|
[8] |
Williamson L A, Chen Y H and Longdell J J 2014 Phys. Rev. Lett. 113 203601
|
[9] |
Xia K Y and Twamley J 2015 Phys. Rev. A 91 042307
|
[10] |
Pei P, Huang H F, Guo Y Q and Song H S 2016 Chin. Phys. Lett. 33 020301
|
[11] |
Marcos D, Wubs M, Taylor J M, Aguado R, Lukin M D and Sorensen A S 2010 Phys. Rev. Lett. 105 210501
|
[12] |
Acosta V M, Bauch E, Ledbetter M P, Santori C, Fu K M C, Barclay P E, Beausoleil R G, Linget H, Roch J F, Treussart F, Chemerisov S, Gawlik W and Budker D 2009 Phys. Rev. B 80 115202
|
[13] |
Fávaro de Oliveira F, Momenzadeh S A, Antonov D, Fedder H, Denisenko A and Wrachtrup J 2016 Physica Status Solidi (a) 213 2044
|
[14] |
Schwartz J, Aloni S, Ogletree D F and Schenkel T 2012 New J. Phys. 14 043024
|
[15] |
Kubo Y, Grezes C, Dewes A, Umeda T, Isoya J, Sumiya H, Morishita N, Abe H, Onoda S, Ohshima T, Jacques V, Dréau A, Roch J F, Diniz I, Auffeves A, Vion D, Esteve D and Bertet P 2011 Phys. Rev. Lett. 107 220501
|
[16] |
Zhu X B, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N and Semba K 2011 Nature 478 221
|
[17] |
Hanson R, Dobrovitski V V, Feiguin A E, Gywat O and Awschalom D D 2008 Science 320 352
|
[18] |
Neumann P, Kolesov R, Jacques V, Beck J, Tisler J, Batalov A, Rogers L, Manson N B, Balasubramanian G, Jelezko F and Wrachtrup J 2009 New J. Phys. 11 013017
|
[19] |
Stern M, Catelani G, Kubo Y, Grezes C, Bienfait A, Vion D, Esteve D and Bertet P 2014 Phys. Rev. Lett. 113 123601
|
[20] |
Grezes C, Julsgaard B, Kubo Y, MaWL, Stern M, Bienfait A, Nakamura K, Isoya J, Onoda S, Ohshima T, Jacques V, Vion D, Esteve D, Liu R B, Molmer K and Bertet P 2015 Phys. Rev. A 92 020301
|
[21] |
Deng H, Wu Y L, Zheng Y R, Akhtar N, Fan J, Zhu X B, Li J, Jin Y R and Zheng D N 2015 IEEE Trans. Appl. Superconductivity 25 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|